Chemiluminescence in neutrophils and Lettré cells induced by myxoviruses

Smita MEHTA, C. Lindsay BASHFORD, Peter KNOX and Charles A. PASTERNAK
Department of Biochemistry, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, U.K.

(Received 24 August 1984/Accepted 12 December 1984)

Luminol-mediated chemiluminescence in neutrophils is stimulated by Sendai virus and by influenza virus; Lettré cells also exhibit chemiluminescence (less than 10% of that of neutrophils), which is stimulated by Sendai virus and by influenza virus. Virally induced permeability changes are not responsible for chemiluminescence, since (i) extracellular Ca$^{2+}$ inhibits permeability changes but stimulates chemiluminescence, and (ii) influenza virus, which induces permeability changes at pH 5.3 but not at pH 7.4, induces chemiluminescence at either pH. Other agents [zymosan, N-formyl-L-methionyl-L-leucyl-L-phenylalanine, 4-phorbol 12-myristate 13-acetate (phorbol ester), A23187] likewise induce chemiluminescence in the absence of permeability changes.

The interaction of viruses with leucocytes is interesting because a primary exposure to influenza (Abramson et al., 1982a,b) or other (Faden et al., 1979) viruses might impair the ability of leucocytes to destroy a subsequent bacterial challenge; such impairment would explain the establishment of a secondary bacterial infection after a primary viral infection of, for example, the respiratory tract (Larson & Blades, 1976). The chemiluminescent response initiated by Sendai virus (Peterhans, 1979, 1980) has been suggested (Peterhans et al., 1983; Kolbuch-Braddon et al., 1984) to be due to the increased permeability of cells to ions and low-M$_r$ compounds known to be induced when Sendai virus fuses with susceptible cells (Fuchs & Giberman, 1973; Pasternak & Micklem, 1973; Okada et al., 1975). On the other hand Ca$^{2+}$, which blocks permeability changes (Pasternak & Micklem, 1974; Impraim et al., 1979, 1980; Masuda & Goshima, 1980; Micklem & Pasternak, 1982), stimulates virally induced chemiluminescence (Semadeni et al., 1984). In order to resolve this apparent paradox, we have measured the effects of Sendai virus on chemiluminescence and permeability changes simultaneously, in the presence and absence of Ca$^{2+}$; since influenza virus at pH 5.3 induces permeability changes similar to those induced by Sendai virus at pH 7.4 (Patel & Pasternak, 1983, 1985), we also examined the effects of influenza virus (at pH 5.5 and 7.4). Because permeability changes have been best characterized in Lettré cells (reviewed by Poste & Pasternak, 1978; Pasternak & Micklem, 1981; Pasternak, 1984), we tested these cells for the chemiluminescent response and found them to be active. Our results with neutrophils and Lettré cells are consistent in showing that the induction of chemiluminescence does not depend on non-specific permeability changes.

Methods and materials

Sendai virus ('3-day'; late-harvest variety), influenza virus (strain X47) (Patel & Pasternak, 1983) and Lettré cells (Bashford et al., 1983) were prepared as previously described. Zymosan A from Saccharomyces cerevisiae (Sigma Chemical Co.) was boiled for 10 min and then opsonized by the method of Faden et al. (1979). The chemotactic peptide fMet-Leu-Phe, 4-phorbol 12-myristate 13-acetate (phorbol ester) and the Ca$^{2+}$ ionophore A23187 were obtained from Sigma Chemical Co.

Neutrophils were prepared from fresh human 'buffy-coat' material by the method of Segal et al. (1980). All steps were carried out at room temperature unless indicated otherwise. A 100 ml sample ofuffy coat was mixed with 100 ml of phosphate-buffered saline (137 mm-NaCl/8 mm-Na$_2$HPO$_4$/2.7 mm-KCl/1.5 mm-KH$_2$PO$_4$, pH 7.4) containing dextran (Sigma; 1%) and heparin (Sigma; 500

Abbreviations used: fMet-Leu-Phe, N-formyl-L-methionyl-L-leucyl-L-phenylalanine; phorbol ester, 4-phorbol 12-myristate 13-acetate; HAU, hemagglutinating unit(s).
leucocyte-enriched (units) and red cells allowed to sediment for 45 min. The leucocyte-enriched supernatant was diluted with an equal volume of phosphate-buffered saline and centrifuged for 5 min at 600 g. The pellet was suspended in Heps-buffered saline (150 mM-NaCl/5 mM-KCl/5 mM-Heps/1 mM-MgCl₂, pH 7.4) containing 0.1 mM-EGTA and layered over Ficoll/Hyphaque (Pharmacia) and centrifuged for 20 min at 1000 g at 37°C. The pellet was suspended in 20 ml of distilled water in order to lyse residual red cells and immediately (within approx. 10 s) mixed with 20 ml of 1.8% (w/v) saline. The suspension was centrifuged for 5 min at 250 g, washed in medium 199 (Flow Laboratories) and suspended (at approx. 3 × 10⁸–5 × 10⁸ cells/ml) in medium 199 and kept at room temperature.

Chemiluminescence was measured by diluting cells into 3 ml of buffer consisting of 150 mM-NaCl, 5 mM-KCl, 1 mM-MgCl₂, 5 mM-glucose, 5 mM-Heps, pH 7.4 or pH 5.5, and 0.2 µM-luminol in scintillation vials. The final cell density was 5–10⁷ neutrophils/ml or 2 × 10⁶–6 × 10⁶ Lettré cells/ml. Neutrophils and macrophages were identified in cell preparations by conventional microscopy after staining with Giemsa/Jenner, Leischmann or haematoxylin/eosin. A typical preparation of Lettré cells contained approx. 0.03% neutrophils and <0.02% macrophages. Vials were kept at 37°C in the dark for at least 1 h before addition of virus or other agent, and then transferred to an LKB liquid-scintillation counter operating with the coincidence selectors removed. As soon as the chemiluminescence had been recorded, vials were re-placed at 37°C. Under the conditions used, neither neutrophils nor Lettré cells showed appreciable endogenous (or stimulated) response in the absence of luminol: thus neutrophils (2 × 10⁵/ml) gave 80 c.p.m. without luminol and 100 000 c.p.m. with luminol; in the presence of Sendai virus (15 HAU/ml) these values were 100 c.p.m. and 90 000 c.p.m. respectively. Lettré cells (6 × 10⁶/ml) gave 70 c.p.m. without luminol and 1900 c.p.m. with luminol; in the presence of Sendai virus (15 HAU/ml), these values were 80 c.p.m. and 7000 c.p.m. respectively.

Intracellular Na⁺ and K⁺ were measured as previously described (Bashford et al., 1983); an increase in the ratio of Na⁺ to K⁺ was taken to indicate increased permeability. Measurement of ⁸⁸Rb⁺ or ³H loss from cells prelabelled with ⁸⁶Rb⁺ or ³H]-choline [which is converted into phospho-³H]-choline, which leaks out only of virally affected cells (Pasternak & Micklem, 1973; Poste & Pasternak, 1978; Impraim et al., 1980) and is a useful measure of the creation of an approx. 1 nm pore (Wyke et al., 1980)] confirmed that ion changes provide a reasonable measure of virally induced permeability changes. Lactate dehydrogenase was measured by the method described by Varley (1969).

Results

Experiments with neutrophils

A typical response to the addition of Sendai virus is illustrated in Fig. 1 (left-hand panels): an increase in chemiluminescence is induced at pH 7.4, but not at pH 5.5. In contrast, influenza virus induces a response at pH 7.4 or pH 5.5. The possibility that viruses induce chemiluminescence extracellularly, from H₂O₂ produced by cells, was examined. First, chemiluminescence in the absence of cells was measured: H₂O₂ (100 µM) plus luminol gave 13 000 c.p.m.; in the presence of Sendai virus (15 HAU/ml) or foetal-calf serum (1%) this was 20 000 c.p.m. and >80 000 c.p.m. respectively. The addition of catalase (1 µg/ml) reduced chemiluminescence in the absence or presence of Sendai virus to 140 and 600 c.p.m. respectively within 30 min. In the presence of Lettré cells, luminol +/− catalase gave 350 c.p.m.; the addition of Sendai virus +/− catalase increased this to 2500 c.p.m.; the addition of 1% foetal-calf serum gave 350 c.p.m. The addition of peroxidase (which increases H₂O₂-stimulated luminol chemiluminescence in the absence of cells 1000-fold) gave 310 and 2600 c.p.m. in the absence and presence of Sendai virus respectively. We conclude that the effects of Sendai or influenza virus on luminol-stimulated chemiluminescence in neutrophils or Lettré cells cannot be ascribed to a leakage of H₂O₂ +/− peroxidase from cells.

Sendai virus induces a permeability change at pH 7.4, but not at pH 5.5; influenza virus induces a permeability change at pH 5.5, but not at pH 7.4 (see Table I and Fig. 3, below). Since permeability changes are likely to be a consequence of virus–cell fusion (Wyke et al., 1980), which in the case of Sendai virus occurs maximally at neutral pH but in the case of influenza occurs maximally at pH values below 6 (Huang et al., 1981; Lenard & Miller, 1981), this is the expected result.

Permeability changes in neutrophils induced by Sendai virus are inhibited by extracellular Ca²⁺ (Fig. 2, left panel). The sensitivity to Ca²⁺ is intermediate between that of Lettré cells (Fig. 2, right panel), which are more sensitive, and human erythrocytes (Bashford et al., 1984), which are less sensitive. Chemiluminescence, on the other hand, is increased by extracellular Ca²⁺ (Fig. 2, left panel), as previously reported (Semadeni et al., 1984).

Since the concentration of influenza virus used to elicit the chemiluminescent response shown in Fig. 1 was some 100-fold greater than that of Sendai virus, it is possible that a slight per-
Chemiluminescence induced by myxoviruses

Neutrophils (10^7/ml; left-hand panels) or Lettré cells (7×10^6/ml; right-hand panels) were incubated at pH 7.4 (upper panels) or pH 5.5 (lower panels) and chemiluminescence measured as described in the Methods and materials section. At the times indicated by the arrow, Sendai virus (15 HAU/ml; open squares), influenza virus (1200 HAU/ml; open circles) or buffer (closed circles) was added to vials as shown.

![Chemiluminescence graphs](image)

Fig. 1. Stimulation of chemiluminescence by myxoviruses

Table 1. Induction of chemiluminescence in neutrophils and Lettré cells

Neutrophils (2×10^5/ml) or Lettré cells (6×10^6/ml) were incubated in Ca$^{2+}$-free medium as described in Methods and materials section for 65–80 min before addition of agent. In the case of fMet-Leu-Phe and ionophore A23187, the medium contained 2 mM Ca$^{2+}$. Chemiluminescence and permeability change were measured as described in the Methods and materials section. The values given are means for two or more experiments, and are relative to the values in the absence of added agent (=100). Abbreviation: n.d., not determined.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Conc.</th>
<th>Chemiluminescence</th>
<th>Permeability change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neutrophils pH7.4</td>
<td>Neutrophils pH7.4</td>
</tr>
<tr>
<td>Sendai virus</td>
<td>15 HAU/ml</td>
<td>$5400 < 150$</td>
<td>$250 < 120$</td>
</tr>
<tr>
<td>Influenza virus</td>
<td>1200 HAU/ml</td>
<td>$6000 < 150$</td>
<td>$< 120 < 120$</td>
</tr>
<tr>
<td>Zymosan</td>
<td>0.3 mg/ml</td>
<td>$1800 < 150$</td>
<td>$< 120 < 120$</td>
</tr>
<tr>
<td>fMet-Leu-Phe</td>
<td>6 μM</td>
<td>$1600 < 150$</td>
<td>$< 120 < 120$</td>
</tr>
<tr>
<td>Phorbol ester</td>
<td>5 μM</td>
<td>$1500 < 150$</td>
<td>$< 120 < 120$</td>
</tr>
<tr>
<td>A23187</td>
<td>10 μM</td>
<td>n.d.</td>
<td>$< 120 < 120$</td>
</tr>
</tbody>
</table>

Chemiluminescence and permeability change at pH 7.5 does underly the chemiluminescent response. Fig. 3 (left panel) shows this not to be the case, in that increasing amounts of influenza virus increase chemiluminescence, but have no effect on cellular permeability. Other agents that induce a chemiluminescent response in neutrophils, such as zymosan, the chemotactic peptide fMet-Leu-Phe, phorbol ester and the Ca$^{2+}$ ionophore A23187, are without effect on cellular permeability to ions (Table 1). Note that phorbol ester, unlike zymosan or fMet-Leu-Phe, is also active at pH 5.5.
Experiments with Lettré cells

Lettré cells (a cell line derived from a mouse mammary tumour; Lettré et al., 1972) were found to respond to Sendai or influenza virus in the same way as neutrophils (Fig. 1, right-hand panel). The magnitude of stimulation by virus, as well chemiluminescence in the absence of virus, is less in Lettré cells than in neutrophils. Since Lettré cells are grown intraperitoneally as ascites fluid in mice, it is possible that the observed chemiluminescence is actually due to contaminating phagocytic cells, rather than to Lettré cells themselves. Although macrophages and neutrophils account for less than 0.05% in a typical preparation, there are approx. 5% of other 'large cells' present. Treatment with serum on plastic dishes reduced this value to approx. 1.4%, with little loss of chemiluminescence response (Table 2). The suspension before treatment contained 8% Trypan Blue-including cells, and 4% Trypan Blue-including cells after treatment. The amount of lactate dehydrogenase that leaked out of Lettré cells during 2 h of incubation was 10% (not increased by Sendai virus). From these data and from the appearance of stained preparations, it is concluded that the 'large cells' present in Lettré-cell suspensions are probably swollen Lettré cells. Since Lettré cells are easier to prepare in large numbers than neutrophils, they should prove useful for further studies of the chemiluminescence response. That chemiluminescence is not confined to circulating phagocytes has been demonstrated by the response of spleen (Peterhans, 1979, 1980; Koppel et al., 1984), and thymus (Kohlbuch-Bradden et al., 1984) cells, as well as platelets (Mills et al., 1978), liver (Wefers et al., 1984) and pancreatic islets (Asayama et al., 1984).

Fig. 2. Effect of Ca$^{2+}$ on Sendai-virus-induced chemiluminescence and permeability changes
Neutrophils (5 × 10⁶/ml; left-hand panel) or Lettré cells (5 × 10⁶/ml; right-hand panel) were incubated for 70–80 min at pH 7.4 in the presence of CaCl₂ as indicated. Sendai virus (15 HAU/ml) was added and the peak chemiluminescence (open squares) and final intracellular ion content (closed squares) during the subsequent 20 min measured. The values shown are percentages of the chemiluminescence and ion ratio (Na⁺/K⁺) of cells to which buffer was added instead of virus.

Table 2. Effect of pretreatment on chemiluminescence by Lettré cells
The chemiluminescence response of Lettré cells [(4–6) × 10⁶/ml] to Sendai virus at pH 7.4 was measured as described in the Materials and methods section, before or after exposure [at (1.7–2.6) × 10⁶/ml] to 10% foetal-calf serum in plastic dishes for 30 min at 37°C. In each case cells were then incubated for 50–85 min before addition of Sendai virus. Foetal-calf serum (10%) alone was without effect on chemiluminescence. The 'large cell' content of the cell suspension was assessed microscopically. Contamination by other cells was less than 0.05%. The results of four separate experiments are shown.

<table>
<thead>
<tr>
<th>Expt. no.</th>
<th>Content of large cells (% of all cells)</th>
<th>Chemiluminescence (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Before treatment</td>
<td>5.6</td>
<td>4.4</td>
</tr>
<tr>
<td>After treatment</td>
<td>1.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Virus-induced chemiluminescence in Lettré cells is, like that in neutrophils, increased by extracellular Ca\(^{2+}\), whereas permeability changes are inhibited (Fig. 2, right panel). The response to influenza virus is also similar to that of neutrophils: chemiluminescence is induced at pH 7.4 as well as at pH 5.5, whereas permeability changes are induced only at pH 5.5 (Fig. 3, right panel, and Table 1; Patel & Pasternak, 1983). Although Lettré cells respond to the same agonists as neutrophils, the magnitude of the response is different (Table 1). Thus Lettré cells respond less well than neutrophils to zymosan, but better than neutrophils to phorbol ester (at pH 7.4). In no case could a permeability change be detected (Table 1). Note that fMet-Leu-Phe, which depolarizes neutrophils (Seligman et al., 1980; Tatham et al., 1980; Kuroki et al., 1982), does not affect the membrane potential of Lettré cells (C. L. Bashford, unpublished work).

Discussion

The present results clearly indicate that influenza-virus-induced chemiluminescence, previously shown to occur in neutrophils at neutral pH (Mills et al., 1981; Abramson, 1982a,b), is no greater at pH 5.5 than at pH 7.4, despite its permeabilizing action at the lower pH (Patel & Pasternak, 1983). The fact that influenza virus is so much less active than Sendai virus (Peterhans, 1980; the present paper) cannot therefore be explained on the basis of a lesser ability to induce a permeability change at neutrality. Moreover, other agents that stimulate chemiluminescence as a result of a receptor-binding event at the leucocyte cell surface, such as fMet-Leu-Phe (Abramson et al., 1982b; Della Bianca et al., 1983; Hallett & Campbell, 1983), induce chemiluminescence in the absence of a detectable permeability change (Table 1). Since there is good evidence that an increase in intracellular Ca\(^{2+}\) accompanies receptor-mediated chemiluminescence (Hallett & Campbell, 1982, 1983), which can be induced by ionophore A23187 in the presence of extracellular Ca\(^{2+}\) (Wilson et al., 1978; Wrogemann et al., 1978; Hallett et al., 1981; de Chatellet & Shinsky, 1982; Hallett & Campbell, 1983; Ozaki & Kume, 1984; the present paper), the origin of that increase becomes, like the increase in intracellular Ca\(^{2+}\) following receptor-mediated events in other cell types (Michell, 1975, 1982; Berridge, 1981), an important question for further study. The present results show that the increase is unlikely to be due to the formation of a non-specific pore. Whether this is true of the increase in intracellular Ca\(^{2+}\) that accompanies the stimulation of polymorphs by complement (Hallett et al., 1981), the terminal factors of which resemble myxoviruses in certain regards (Bashford et al., 1984; Pasternak et al., 1985a,b) remains to be seen.

We thank Dr. E. Peterhans and Miss Margaret Barrowman for much helpful discussion, Dr. K. Meréty for drawing our attention to publications on the chemiluminescent response of other cell types, the South-West Thames Region Blood Transfusion Centre for supplying buffy-coat material and the Science and Engineering Research Council and the Cell Surface Research Fund for financial assistance.

References