Photoaffinity labelling of central-nervous-system myelin

Evidence for an endogenous type I cyclic AMP-dependent kinase phosphorylating the larger subunit of 2',3'-cyclic nucleotide 3'-phosphodiesterase

Jane M. BRADBURY* and R. J. THOMPSON
Department of Clinical Biochemistry, School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, U.K.

(Received 22 December 1983/Accepted 4 April 1984)

1. Endogenous cyclic AMP-stimulated phosphorylation of a 49700-Mr, Wolfgram protein component in rabbit central nervous system was investigated by using photoaffinity labelling and 2',3'-cyclic nucleotide 3'-phosphodiesterase activity staining after electroblotting on to nitrocellulose paper. 2. Photoaffinity labelling with 8'-azidoadenosine 3',5'-cyclic monophosphate showed a cyclic AMP-binding protein that appeared to be intrinsic to the myelin membrane and appeared to represent the R-subunit of a type I cyclic AMP-dependent protein kinase. This photoaffinity-labelled protein was of larger apparent M, than the protein showing cyclic AMP-stimulated phosphorylation. 3. Blotting of one-dimensional sodium dodecyl sulphate/polyacrylamide-gel electrophoretograms followed by staining for 2',3'-cyclic nucleotide 3'-phosphodiesterase activity showed two activity bands corresponding to the two components of the Wolfgram protein doublet. Cyclic AMP-stimulated protein phosphorylation corresponded to the upper component of this doublet. 4. Electroblotting of two-dimensional non-equilibrium pH-gradient electrophoretograms also showed co-migration of cyclic AMP-stimulated protein phosphorylation with enzyme activity. 5. It is proposed that central-nervous-system myelin contains an endogenous type I cyclic-AMP dependent protein kinase that phosphorylates the larger subunit of 2',3'-cyclic nucleotide 3'-phosphodiesterase.

Phosphorylation of proteins is generally believed to be of great importance in the regulation of biological activities (Greengard, 1978). There is now considerable evidence for phosphorylation systems being intrinsic to the multilamellar myelin sheath surrounding central-nervous-system axons (Carnegie et al., 1973; Miyamoto & Kakiuchi, 1974; Miyamoto et al., 1974; Steck & Appel, 1974; Miyamoto, 1975; Sulakhe et al., 1980a,b; Endo & Hidaka, 1980; Turner et al., 1982). The major protein being phosphorylated in the myelin membrane is myelin basic protein, which appears to be phosphorylated via a basal protein kinase (cyclic nucleotide- and Ca2+-independent; Steck & Appel, 1974; Miyamoto, 1975; Sulakhe et al., 1980a). A phospholipid- and Ca2+-dependent kinase (Turner et al., 1982) and possibly a Ca2+- and calmodulin-dependent kinase (Sulakhe et al., 1980a,b; Endo & Hidaka, 1980). Endogenous cyclic AMP-dependent protein kinases seem to have little or no effect on the phosphorylation of myelin basic protein (Sulakhe et al., 1980b). However, cyclic AMP-stimulated phosphorylation of an unidentified protein, of higher molecular mass than myelin basic protein, that migrates in the region of the Wolfgram protein doublet (Wolfgram & Kotorii, 1968) has been observed by several groups (Sulakhe et al., 1980a; Endo & Hidaka, 1980; Turner et al., 1982). Sulakhe et al. (1980a) proposed that the labelling of this protein represented the autophosphorylation of the regulatory subunit of a type II protein kinase (EC 2.7.1.37) that possibly was not intrinsic to the myelin membrane. We have shown that there is a cyclic AMP-stimulated phosphorylation of a 49700-Mr, peptide.
protein in myelin that co-migrates with the upper component of the Wolfram protein doublet (Wolfram & Kotorii, 1968) and that appears to be intrinsic to the myelin membrane, as it closely follows the established myelin marker enzyme CNPase on subcellular fractionation (Bradbury et al., 1984). Since there is now evidence that the Wolfram protein doublet may represent CNPase (Drummond & Dean, 1980; Sprinkle et al., 1980), an alternative possibility would be that the cyclic AMP-stimulated phosphorylation seen in the myelin membrane (Bradbury et al., 1984) represents modification of the phosphodiesterase enzyme itself (Turner et al., 1982). The present paper presents evidence for a type I cyclic AMP-dependent protein kinase in myelin that specifically phosphorylates the larger subunit of CNPase.

Materials and methods

Materials

All chemicals were of AnalR grade and obtained from BDH Chemicals, Poole, Dorset, U.K., unless otherwise stated.

Isolation and subfractionation of myelin

The method used for the isolation of myelin was based on the methods of Whittaker (1965) as described in Bradbury et al. (1984). Further subfractionation of the myelin on linear sucrose density gradients was as described in Bradbury et al. (1984).

Enzyme assays

CNPase (EC 3.1.4.37) was assayed with 2',3'-cyclic NADP as the substrate (Sogin, 1976). Lactate dehydrogenase (EC 1.1.1.27), citrate synthase (EC 4.1.3.7) and acetylcholinesterase (EC 3.1.1.7) were assayed as described by Johnson (1960), Srere (1969) and Ellman et al. (1961) respectively, in order to monitor the progress of subcellular fractionation and subfractionation of myelin. The fractionations used in the present paper gave essentially the same results as those described in Bradbury et al. (1984). 5'-Nucleotidase (EC 3.1.3.5) was assayed as described by Stanley et al. (1980). Cyclic AMP phosphodiesterase (EC 3.1.4.17) was assayed by the method described by Hutton et al. (1981).

Protein concentrations were measured by using the method of Lowry et al. (1951), with bovine serum albumin (Armour Pharmaceutical Co., Eastbourne, East Sussex, U.K.) as standard.

Phosphorylation

Myelin samples were phosphorylated exactly as described in Bradbury et al. (1984).

Photoaffinity labelling

To determine whether any of the bands being phosphorylated in myelin were R-subunits of cyclic AMP-dependent protein kinases, cyclic 8-azido-[32P]AMP, triethylamine salt (0.5 Ci/mmol; ICN Chemical and Radioisotope Division, Irvine, CA, U.S.A.), was used to photoaffinity-label myelin. Samples were labelled in a medium similar to that described by Pomerantz et al. (1975) but with the addition of Triton X-100. Samples (25 μl) containing 10–15 μg of protein were incubated with 25 μl of double-strength reaction mixture (10 mM-Tris/HCl, pH 7.4, 40 mM-MgCl₂, 0.05% Triton X-100, 0.375 μM-cyclic 8-azido-AMP) in the presence and in the absence of cyclic AMP at a final concentration of 0.1 mM. The reactions were done in plastic flat-bottomed microtitre well plates resting on ice to maintain the temperature at 4°C. Incubations were done in the dark for 30 min before exposure of the samples to u.v. light for 10 min with the u.v. source held at a distance of 10 cm (Gallenkamp portable u.v. light, 125 W bulb, peak output 365 nm; Gallenkamp and Co., London E.C.2, U.K.). A 40 μl sample was taken from each well and boiled for 3 min with 40 μl of SDS-sample buffer (Bradbury et al., 1984) to prepare the samples for electrophoresis.

Preparation of soluble fractions from rabbit heart and brain

Soluble fractions were made from fresh rabbit heart and brain by Polytron-homogenization of the organs in 0.32 M-sucrose, centrifuging at 3000 rev./min in a Sorvall SS34 rotor (830 gav) for 15 min at 4°C and re-spinning the supernatant at 40000 rev./min in a Beckman SW50.1 rotor (140000 gav) for 1 h at 4°C. The supernatants were stored at −20°C until needed.

Electrophoresis

SDS/polyacrylamide-gel electrophoresis was performed as described by Laemmli (1970).

Two-dimensional gel electrophoresis with non-equilibrium pH-gradient electrophoresis in the first dimension and SDS/polyacrylamide-gel electrophoresis in the second was used to separate basic proteins (O'Farrell et al., 1977). Sample preparation was as described by Ames & Nikaido (1976). The 11 cm-long tube gels (1.5 mm internal diameter) were prepared as described by O'Farrell et al. (1977) and contained 2% pH 3.5–10 Ampholines (LKB Instruments, Croydon, Surrey, U.K.). The second dimension consisted of a 10% polyacrylamide resolving gel with a 5% polyacrylamide stacking gel.

Polyacrylamide gels were either stained for protein by using Kenacid Blue R as described in
Phosphorylation of 2',3'-cyclic nucleotide phosphodiesterase

Bradbury et al. (1984) or used to determine CNPase migration in the gel system.

Activity staining of CNPase after gel electrophoresis

Proteins separated by one-dimensional or two-dimensional gel electrophoresis were transferred to nitrocellulose paper (0.45 \mu m; Anderman and Co., East Molesey, Surrey, U.K.) by electroblotting (Towbin et al., 1979; Burnette, 1981) in a Bio-Rad Trans-Blot Electrophoretic Transfer cell for 16 h at 5 V/cm (Thompson et al., 1983) with 20 mm-Tris base/150 mm-glycine/20% (v/v) methanol as the tank buffer (Towbin et al., 1979). The nitrocellulose sheets were then preincubated for 1 h in 50 mm-Mes (4-morpholine-ethanesulphonic acid; Sigma Chemical Co., Poole, Dorset, U.K.) buffer, pH 6.1, containing 30 mm-MgCl₂, 0.1% Triton X-100, 3 mg-guanidinium chloride (grade 1; Sigma Chemical Co.), 1 mm-EDTA, 1 mm-dithiothreitol and 5% (v/v) glycerol, then for 1 h in the same buffer without guanidinium chloride. The preincubation steps were essential for recovery of enzyme activity after electrophoresis in SDS (Hager & Burgess, 1980). The blots were then stained for activity by using Nitro Blue Tetrazolium [3,3'- (3,3'-dimethoxy-4,4'-diphenylene)-2,2'-di-p-nitrophenyl-5,5'-diphenylditetrazolium chloride (grade III; Sigma Chemical Co.)] and phenazine methosulphate (Sigma Chemical Co.) to detect the NADPH produced in the normal enzyme-linked reaction for CNPase (Sogin, 1976).

It was found necessary to immobilize the coloured reaction product with the use of dilute agarose. Equal volumes of 1% agarose (electrophoresis grade; Fisons Scientific Apparatus, Loughborough, Leics., U.K.) in water at 55°C and reaction mixture [200 mm-Mes buffer, pH 6.1, containing 60 mm-MgCl₂, 0.2% Triton X-100 and 0.1 mm-2',3'-cyclic NADP, and in addition 4 mm of glucose 6-phosphate (Boehringer Mannheim, Lewes, East Sussex, U.K.)/ml, 0.4 mm of Nitro Blue Tetrazolium/ml, 0.04 mm of phenazine methosulphate/ml and 0.7 unit of glucose-6-phosphate dehydrogenase (grade II from yeast; Boehringer Mannheim)] were rapidly mixed and poured on top of the nitrocellulose filter. Generally a colour reaction was visible within 15 min. The reaction was stopped by swamping the agarose overlay with 10% acetic acid.

Results

Photoaffinity labelling with cyclic 8'-azido-AMP

The results of photoaffinity labelling of myelin fraction P₄ (Bradbury et al., 1984) in parallel with supernatant fractions from rabbit heart and rabbit brain homogenates are shown in Fig. 1. Two proteins were labelled in rabbit heart supernatant with apparent Mᵦ values of approx. 51000 and 55000 (Fig. 1b); these presumably represented the regulatory (R-) subunits of a type I and a type II cyclic AMP-dependent protein kinase respectively (Flockhart & Corbin, 1982). Rabbit brain supernatant showed prominent labelling of the Rᵦ-subunit compared with the R⁺-subunit, and also faint labelling of two lower-molecular-mass proteins, which were assumed to be proteolytic breakdown products (Fig. 1b). Myelin fraction P₄ showed labelling of a protein with the same electrophoretic mobility as the R⁺-subunit from heart and brain, with faint labelling of a protein with the same mobility as the Rᵦ-subunit from these organs (Fig. 1b). The labelling of this upper Rᵦ-subunit in myelin P₄ fractions was somewhat variable and in some experiments approached the intensity of the labelling in the lower-Mᵦ R⁺-type subunit. The inclusion of 0.1 mm-cyclic AMP in the incubation medium virtually abolished the photoaffinity labelling in the myelin fraction and heart supernatant but produced only a moderate decrease in labelling in the brain supernatant, presumably because of high cyclic AMP phosphodiesterase activity in these preparations (Walter et al., 1978). Unlike brain and heart supernatants, which were photoaffinity-labelled satisfactorily in the absence of detergents, the presence of Triton X-100 was essential to produce photoaffinity labelling in the myelin fraction (Fig. 1b). Extensive washing of myelin fraction P₄ by centrifugation in 2 m-NaCl (three washes) did not diminish photoaffinity labelling compared with unwashed P₄ membranes (results not shown). The lower-Mᵦ photoaffinity-labelled R⁺-type subunit migrated in all three samples with a slightly higher apparent Mᵦ than the upper band of the Wolfram protein doublet (Figs. 1a and 1b).

Fig. 2 shows the effect of photoaffinity-labelling fractions produced by sucrose-density-gradient centrifugation of myelin fraction P₄ (Bradbury et al., 1984). Labelling of higher-Mᵦ Rᵦ-type subunit was most prominent in the most rapidly sedimenting fractions from the gradient (fractions 2–8, Fig. 2), whereas labelling of a lower-Mᵦ R⁺-type subunit was most prominent in the intermediate fractions from the gradient (fractions 6–11, Fig. 2). Both types of subunits became less prominent in fractions from the upper part of the gradient containing multilamellar myelin (Bradbury et al., 1984). Thus photoaffinity labelling of these gradient fractions indicated that the presence of an Rᵦ-type subunit was associated with membrane fractions containing 5'-nucleotidase and acetylcholinesterase activity, whereas the presence of an R⁺-type subunit was more characteristic of membrane fractions containing CNPase activity (Bradbury et al., 1984). The labelling shown in Fig. 2
could be abolished by including 0.1 mM-cyclic AMP in the medium (not shown; cf. Fig. 1). Myelin basic protein also showed some photoaffinity labelling with cyclic 8'-azido-AMP (Fig. 2); however, this was unaffected by the inclusion of 0.1 mM-cyclic AMP and was therefore presumably a non-specific phenomenon.

Double-labelling of myelin fractions with cyclic 8'-azido-AMP and [32P]ATP

Since alterations in mobility on SDS/polyacrylamide-gel electrophoresis can be produced by different phosphorylation states (Hofmann et al., 1975; Uno et al., 1977), double-labelling experiments were performed in which a myelin sample was first phosphorylated and then photoaffinity-labelled with cyclic 8'-azido-AMP (Fig. 3). Phosphorylation of the myelin sample with non-radioactive ATP followed by photoaffinity labelling did not alter the mobility of the affinity-labelled protein compared with that seen with photoaffinity labelling without prior phosphorylation (compare tracks 1 and 2, Fig. 3). Phosphorylation with [32P]ATP alone produced a radioactive protein with a lower apparent M_r than that of the radioactive protein seen with photoaffinity labelling (compare tracks 1 and 2 with track 4, Fig. 3). Phosphorylation with [32P]ATP followed by radioactive photoaffinity labelling produced an accentuated radioactive band (track 3, Fig. 3), which appeared to be more prominent than the sum of the individual higher-M_r photoaffinity-labelled protein (tracks 1 and 2, Fig. 3) and the lower-M_r phosphorylated protein (track 4, Fig. 3), presumably because of the cyclic AMP-like action of the cyclic 8'-azido-AMP analogue. It was concluded from these experiments that the photoaffinity-labelled protein could be distinguished from the cyclic

Fig. 1. **Photoaffinity labelling of myelin membranes**

Portions (10 μg of protein) of soluble heart and brain fractions and purified myelin (fraction P₄; Bradbury et al., 1984) were photoaffinity-labelled as described in the Materials and methods section in the presence and in the absence of 0.1 mM-cyclic AMP. Apart from the myelin fraction, none of the fractions required Triton X-100 for labelling. A 5 μg portion of labelled protein was applied per track of an SDS/10% polyacrylamide gel. After electrophoresis the gel was stained with Kenacid Blue R, dried and autoradiographed. (a) Kenacid Blue-stained gel. The Wolfram doublet of proteins shows clearly in the four myelin tracks, about one half of the way down the gel. (b) Autoradiogram of the gel shown in (a). The lower of the two bands labelled in the heart soluble fraction in the absence of cyclic AMP was designated as an R₄-type subunit of a cyclic AMP-dependent protein kinase. The upper band was designated as an R₁₂-type subunit.
AMP-stimulated phosphorylated protein by a greater apparent Mr, (Fig. 3).

Activity staining of CNPase on SDS/polyacrylamide-gel electrophoresis and two-dimensional non-equilibrium pH-gradient electrophoresis

Fig. 4 shows the results of staining for CNPase activity on nitrocellulose 'blots' of one-dimensional SDS/polyacrylamide-gel electrophoreograms of a myelin P₄ fraction. This showed two closely spaced bands of enzyme activity, at a migration position corresponding exactly to that of the Wolfgram protein doublet. Two lower-Mr bands, not visible on Kenacid Blue staining of SDS/polyacrylamide-gel electrophoreograms, also showed CNPase activity. These lower-Mr bands were virtually absent when freshly prepared myelin P₄ samples were used and became more prominent with increased freezing and thawing or storage at 4°C; for this reason it is assumed that they represent proteolytic cleavage products of the intact enzyme. Addition of 10mM-2',3'-cyclic AMP (a competing substrate with 2',3'-cyclic nicotinamide-adenine dinucleotide phosphate) abolished activity staining (not shown). When the stained blot was autoradiographed, cyclic AMP-stimulated phosphorylation co-migrated exactly with the upper band of CNPase activity (Fig. 4). In order to exclude co-migration of a phosphorylated non-CNPase protein with a non-phosphorylated CNPase protein, a phosphorylated myelin P₄ sample was analysed by two-dimensional gel electrophoresis as described in the Materials and methods section, and stained for enzyme activity as shown in Fig. 5. Two areas of enzyme activity were seen after staining, with the higher-Mr band migrating more rapidly towards the cathode (Fig. 5a). Autoradiography of the same nitrocellulose blot showed that the radioactivity in the phosphorylated myelin sample co-migrated exactly with the CNPase activity (Fig. 5b). Distinct radioactive species could be seen, suggesting multiple phosphorylated forms of the enzyme.

Discussion

Previous work has shown that the cyclic AMP-stimulated phosphorylation of a 49700-Mr protein co-segregates with myelin and the myelin marker enzyme CNPase on subcellular fractionation and appears to be intrinsic to the myelin membrane itself (Bradbury et al., 1984). Furthermore the phosphorylated protein co-migrates with the upper component of the Wolfgram protein doublet.
label the protein not electrophoresed, the use previously reported by subunit (Fig. 1). rather protein binding autophosphorylation (Sulakhe et al., 1980a). With the use of cyclic 8'-azido-AMP as a photoaffinity label the present studies show that the cyclic AMP-binding protein within myelin membrane fractions electrophoreses, not with an R11-subunit mobility, but rather with the mobility characteristic of an R1-subunit (Fig. 1). A similar finding has been previously reported by Walter et al. (1978). Further fractionation of myelin P4 preparations on linear-sucrose-density-gradient centrifugation (Fig. 2) shows that the cyclic AMP-binding R1-type subunit is primarily located in those fractions with the highest specific activity of CNPase, i.e. in those fractions in which cyclic AMP-stimulated phosphorylation is greatest and that are thought to represent 'myelin-like' membrane fragments (Bradbury et al., 1984). Although cyclic AMP binding by an apparent R11-type subunit (as judged by electrophoretic mobility; Fig. 1) can be shown in myelin P4 fractions (Fig. 1), this primarily sedi-
ments with heavier membrane fragments (Fig. 2), which possibly do not represent true myelin membrane and which characteristically do not show cyclic AMP-stimulated phosphorylation of the 49 700-Mr protein (Bradbury et al., 1984). The phosphorylation of the upper component of the Wolfgram protein doublet can be shown by double-labelling experiments to be distinct from the labelling produced by cyclic 8'-azido-AMP (Fig. 3). The evidence presented here therefore indicates that the cyclic AMP-stimulated phosphorylation of the 49 700-Mr protein seen in myelin membrane fractions does not represent autophosphorylation of an R1 subtype subunit, although an R1 subunit is present in the membrane closely associated with the peak activity of cyclic AMP-stimulated phosphorylation of the 49 700-Mr protein and with maximum CNPase activity (Fig. 2; Bradbury et al., 1984). Type I protein kinases characteristically do not show autophosphorylation of the R-subunit (Flockhart & Corbin, 1982). The type I cyclic AMP-dependent kinase present in the myelin membrane appears to be an intrinsic activity, as it cannot be removed by repeated centrifugation in high-salt solutions.

The 49 700-Mr phosphorylated protein co-migrates with the upper component of the Wolfgram protein doublet (Bradbury et al., 1984). Previous workers have presented evidence that the Wolfgram protein doublet represents the CNPase enzyme itself (Drummond & Dean, 1980; Sprinkle et al., 1980). Purified CNPase appears to be a dimer of Mr 100000 with slightly dissimilar Mr subunits, both of which are catalytically active (Müller, 1982). Purified CNPase from several sources co-migrates with the Wolfgram protein doublet in the same species, and both immunological and structural similarities between purified Wolfgram proteins and CNPase have been clearly demonstrated (Drummond & Dean, 1980; Sprinkle et al., 1980). However, the purification procedure for the production of Wolfgram protein results in complete loss of CNPase activity (Drummond & Dean, 1980). CNPase activity on urea/polyacrylamide-gel electrophoretograms was demonstrated by Braun & Barchi (1972), but the resolution of the system only allowed localization of the activity in the Wolfgram protein region and not to specific bands. The blotting and enzyme activity staining procedure described here allows a direct demonstration of CNPase activity co-migrating exactly with the Wolfgram protein doublet (Fig. 4). This procedure also demonstrates that the cyclic AMP-stimulated protein phosphorylation coincides with the higher-Mr subunit of CNPase (Fig. 4). Lower-Mr bands of enzyme activity, which become more prominent with aging of the myelin sample, presumably represent proteolytic breakdown products of the higher-Mr CNPase doublet (Fig. 4). It is noteworthy that these lower-Mr species, although possessing enzyme activity, do not appear to be phosphorylated, thus suggesting that they are derived from the lower-Mr, non-phosphorylated subunit of CNPase (Fig. 4). Finally, the present work demonstrates that activity staining after two-dimensional non-equilibrium pH-gradient electrophoresis also shows co-migration of CNPase enzyme activity.

Fig. 5. CNPase activity staining of two-dimensional gels

Portions (150 µg) of labelled myelin (P4) prepared as described in the Materials and methods section were applied to the anodic end of a gel tube, prepared as described by O'Farrell et al. (1977), and electrophoresed for a total of 1650 V·h with 0.01M-H3PO4 as anode buffer and 0.02M-NaOH as cathode buffer. The tube gels were then equilibrated in SDS-sample buffer for 30 min and applied to an SDS/10% polyacrylamide gel with 5% stacking gel. (a) CNPase-activity-stained blot of two-dimensional gel. The small amount of activity at the positive end of the gel is presumably due to some of the enzyme entering the first dimension poorly. (b) Autoradiogram of the blot shown in (a). Only the higher-Mr species of CNPase was labelled. Again some streaking towards the anode was observed.
and cyclic AMP-stimulated protein phosphorylation (Fig. 5). It is therefore concluded from the present and the accompanying paper (Bradbury et al., 1984) that central-nervous-system myelin contains an intrinsic type I cyclic AMP-dependent protein kinase that specifically phosphorylates the larger subunit of CNPase.

The physiological significance of the present findings is not yet clear. Preliminary work has not shown any apparent effect on K_m or V_{max} of CNPase, at least towards $2',3'$-cyclic nicotinamide–adenine dinucleotide phosphate as substrate; however, this is presumably not the substrate in vivo for the enzyme (Sims & Carnegie, 1979). It is also uncertain how accessible the enzyme is in vivo to soluble cytoplasmic signals such as a rise in cyclic AMP concentration, since in vitro the presence of detergent is necessary to demonstrate the phosphorylation effect. However, studies performed in vivo have shown that proteins in the region of the Wolfgram protein doublet (and myelin basic protein itself) are readily phosphorylated (Agrawal et al., 1982). Finally, the appearance of CNPase on two-dimensional electrophoresis suggests multiple phosphorylation sites on the larger subunit (Fig. 5), and these could possibly be influenced by other controlling factors.

Miss H. Wombwell is thanked for expert technical assistance.

References

Carnegie, P. R., Kemp, B. E., Dunkley, P. R. & Murray, A. W. (1973) *Biochem. J.* 135, 569–572

