Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells

Jean-Pierre MAUGER, Josiane POGGIOLI, François GUESDON and Michel CLARET
LA 89, Bâtiment 443, Université de Paris-Sud, 91405 Orsay Cedex, France

(Received 11 January 1984 | Accepted 9 March 1984)

The effects of the Ca2+-mobilizing hormones noradrenaline, vasopressin and angiotensin on the unidirectional influx of Ca2+ were investigated in isolated rat liver cells by measuring the initial rate of 45Ca2+ uptake. The three hormones increased Ca2+ influx, with EC\textsubscript{50} values (concentrations giving half-maximal effect) of 0.15 µM, 0.44 nM and 0.8 nM for noradrenaline, vasopressin and angiotensin respectively. The actions of noradrenaline and angiotensin were evident within seconds after their addition to the cells, whereas the increase in Ca2+ influx initiated by vasopressin was slightly delayed (by 5–15 s). The activation of Ca2+ influx was maintained as long as the receptor was occupied by the hormone. The measurement of the resting and hormone-stimulated Ca2+ influxes at different external Ca2+ concentrations revealed Michaelis–Menten-type kinetics compatible with a saturable channel model. Noradrenaline, vasopressin and angiotensin increased both K\textsubscript{m} and V\textsubscript{max} of Ca2+ influx. It is proposed that the hormones increase the rate of translocation of Ca2+ through a common pool of Ca2+ channels without changing the number of available channels or their affinity for Ca2+.

The transmembrane electrochemical gradient for Ca2+ is very large in rat liver cells, as for other tissues (Thomas, 1982). Recent detection of cytoplasmic Ca2+ by the null-point method (Murphy et al., 1980) or by the fluorescent Ca2+ indicator quin 2 (Charest et al., 1983; Berthon et al., 1984) indicates that [Ca2+\textsubscript{i}] (intracellular [Ca2+]) is about 100–200 nM. For a negative membrane potential (Claret & Mazet, 1972; Haylett & Jenkinson, 1972) and at millimolar concentration of external Ca2+, the passive Ca2+ influx is necessarily much larger than the passive Ca2+ efflux. In the liver, the resulting net influx is balanced by the ATP-dependent Ca2+ pump (Claret-Berthon et al., 1977; Lotersztajn et al., 1981; Iwasa et al., 1982). Very few results have been reported on the properties of Ca2+ influx in the mammalian liver (Claret-Berthon et al., 1977; Barritt et al., 1981; Studer & Borle, 1983) although, given the transmembrane Ca2+ gradient, it should be involved in the control of [Ca2+]. The Ca2+-mobilizing hormones, noradrenaline, vasopressin and angiotensin cause a rapid and sustained increase in cytosolic Ca2+ (Murphy et al., 1980; Charest et al., 1983; Berthon et al., 1984). We have observed (Berthon et al., 1984) that the rise in [Ca2+\textsubscript{i}] is affected by removing external Ca2+ from isolated rat hepatocytes, suggesting a contribution of Ca2+ influx either directly in increasing [Ca2+\textsubscript{i}] or in reloading the internal Ca2+ stores mobilized by the hormones. In the present work we have analysed the unidirectional Ca2+ influx into isolated rat liver cells and examined the effects of the Ca2+-mobilizing hormones. The results confirm that noradrenaline, vasopressin and angiotensin stimulate unidirectional Ca2+ influx in rat hepatocytes, as previously observed by others (Assimacopoulos-Jeannet et al., 1977; Keppens et al., 1977; Barritt et al., 1981). The effect is evident within seconds after the addition of the agonists, is sustained as long as the agonist is bound to its receptor and is rapidly reversed by the antagonists. The measurement of the influx as a function of [Ca2+\textsubscript{o}] (extracellular [Ca2+]) indicates that Ca2+ enters the cell via a saturable process and that the three hormones increase both K\textsubscript{m} and V\textsubscript{max} of Ca2+ influx through a common pool of Ca2+ channels (or carriers).

Abbreviation used: d(CH\textsubscript{2})\textsubscript{3}tyr(et)VAVP, [1-(β-mercapto-ββ-cyclopentamethylenepropionic acid), 2-(o-ethyltyrosine), 4-valine, 8-arginine]vasopressin.
Experimental

Preparation of dispersed rat liver cells

Parenchymal cells were isolated from the liver of fed female Wistar rats (200–220 g) by a collagenase method as previously described (Burgess et al., 1981). Unless otherwise indicated, the cells were incubated at 37°C in Eagle’s medium containing (mM): NaCl, 116; KCl, 5.4; CaCl2, 1.8; MgSO4, 0.81; NaH2PO4, 0.96; NaHCO3, 25; and (mg/l): glutamine, 292; amino acids, 805; vitamins, 8.1; glucose, 1000; supplemented with 2% bovine serum albumin and gassed with O2/CO2 (19:1).

Measurement of 45Ca2+ influx

The influx measurement was started by adding 500 μl of the cell suspension (2 × 10⁶–3 × 10⁶ cells/ml, i.e. about 4.4–6.6 mg dry wt./ml) to trace amounts of 45CaCl2 (2–3 μCi/ml) and to the hormone. In some experiments (see the Results section), the cells were preincubated for 50–60 min in Eagle’s medium containing 150 μM-Ca2+ and the influx was assessed by adding the desired Ca2+ concentration, 45Ca2+ and the hormone to the cell suspension. At Ca2+ concentrations lower than 150 μM, EGTA (75 μM) was present. The concentration of free Ca2+ was calculated by using the dissociation constant of the EGTA–Ca2+ complex (227 nM) proposed by Bartfai (1979). The 45Ca2+ uptake was determined by taking 100 μl samples at 15, 45, 75 and 105 s. Each was immediately diluted in 4 ml of an ice-cold ‘washing solution’ containing (mM): NaCl, 144; CaCl2, 5; Tris/HCl (pH 7.4), 5. The mixture was then filtered through a Whatman GF/C glass filter and washed with 3 × 4 ml of the ice-cold ‘washing solution’. Care was taken that the filter did not get into contact with air before the termination of the washing procedure. In these conditions, the cellular K+ content determined by flame spectrophotometry was 250–260 nmol/mg dry wt., which is 90% of the K+ content determined in cells from the same suspension washed by centrifugation at 12000 g for 30 s. This indicates that the filtration procedure did not alter the ionic permeabilities of rat hepatocytes. The radioactivity associated to the filter was then counted in a scintillation spectrometer after addition of the appropriate scintillation liquid.

Analysis of the results

The unidirectional influx of Ca2+ was determined from the initial rate of 45Ca2+ uptake by the cells. The sampling period (0–105 s) was short enough as compared with the time constant (10–20 min) of 45Ca2+ exchange in rat liver (Claret-Berthon et al., 1977; Studer & Borle, 1983) to minimize the underestimation of Ca2+ influx. It may be estimated from the correction factor

\[
(t/\tau)[1 - \exp(-t/\tau)],
\]

where \(\tau\) is the time constant of Ca2+ exchange and \(t\) the loading time (Keynes, 1954), that after 105 s the measured influx was underestimated by 6–8%. This is reasonably in the range of the experimental error associated with flux measurements. This was experimentally confirmed by the observation of linear 45Ca2+ uptakes over 105 s periods as estimated by linear-regression analysis (see Fig. 1).

Extrapolation of Ca2+ uptake to the ordinate gave values different from zero, indicating that a small amount of 45Ca2+ was not displaced by the ‘washing solution’ containing 5 mM non-radioactive Ca2+. Similar results were found when the solution contained 0.1 mM-La3+ or 2 mM-EGTA instead of Ca2+. Of this fraction of 45Ca2+ resistant to repeated washings, 60% resulted from 45Ca2+ bound to the glass-fibre filter, and the remaining 40% presumably from binding to permeabilized cells. In agreement with this conclusion, if the cells were incubated at 0°C to block 45Ca2+ exchange through plasma membranes, the radioactivity remaining on the filter was not different from the values obtained by extrapolation to zero time in experiments at 37°C.

Materials

45Ca2+ was supplied by I.R.E., Fleurus, Belgium; amino acids and vitamins were from Gibco Europe; collagenase was from Boehringer; (−)-noradrenaline, [arginine]vasopressin, angiotensin, (+)-propranolol, carbonyl cyanide m-chlorophenylhydrazone and albumin (fraction V) were from Sigma; phenoxycbenzamine was given by Smith, Kline and French; phenolamine was given by Ciba–Geigy; d(CH2)5 tyr(et)VAVP and [l-sar-cosine, 8-isoleucine]angiotensin were generously given by Dr. S. Jard and Dr. G. Guillou (Centre CNRS–INSERM Pharmacologie–Endocrinologie, Montpellier, France). All other materials were of analytical grade.

Results

Effects of noradrenaline, vasopressin and angiotensin on the unidirectional influx of Ca2+

The uptake of 45Ca2+ was measured 15, 45, 75 and 105 s after the addition of trace amounts of 45Ca2+ to the cells incubated in the presence of 1.8 mM-CaCl2 (Fig. 1). The basal Ca2+ influx as calculated from the slope of the regression lines was 339 ± 15 pmol/min per mg cell dry wt. (n = 18). Maximal concentrations of noradrenaline (1 μM), vasopressin (10 nM) and angiotensin (10 nM) added at the same time as 45Ca2+ increased the influx by 35, 160 and 150% respectively (see Fig. 1 and Table 1).

Table 1 shows the effect of the antagonists on the

Table 1. Effect of noradrenaline, vasopressin and angiotensin on Ca2+ influx in isolated rat hepatocytes

The cells were incubated and Ca2+ influx was measured as indicated in the legend to Fig. 1. When used, the antagonists were added 6 min before 45Ca2+. Results are means ± S.E.M. for the numbers of experiments shown in parentheses.

<table>
<thead>
<tr>
<th>Addition</th>
<th>Ca2+ influx (pmol/min per mg dry wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NaCl</td>
<td>339 ± 15 (18)</td>
</tr>
<tr>
<td>Noradrenaline (1 μM)</td>
<td>458 ± 55 (8)</td>
</tr>
<tr>
<td>Noradrenaline (1 μM) + phenoxybenzamine (50 μM)</td>
<td>349 ± 59 (10)</td>
</tr>
<tr>
<td>Vasopressin (10 nM)</td>
<td>881 ± 85 (9)</td>
</tr>
<tr>
<td>Vasopressin (10 nM) + d(CH2)5-tyr(et)VAVP (50 nM)</td>
<td>329 ± 68 (3)</td>
</tr>
<tr>
<td>Angiotensin (10 nM)</td>
<td>848 ± 51 (6)</td>
</tr>
<tr>
<td>Angiotensin (10 nM) + [1-sarcosine, 8-isoleucine]angiotensin (10 nM)</td>
<td>339 ± 17 (6)</td>
</tr>
</tbody>
</table>

Fig. 1. Uptake of 45Ca2+ into rat hepatocytes as a function of time

Rat hepatocytes (4.3 mg dry wt./ml) were incubated in Eagle’s medium containing 2% albumin and 5 μM-propranolol under O2/CO2 (19:1) at 37°C. Trace amounts of 45Ca2+ were added at zero time, and samples were taken at the indicated time, washed and counted for radioactivity as indicated in the Experimental section. When tested, the hormones were added at the same time as 45Ca2+. The lines drawn were determined by linear-regression analysis. The correlation coefficient were: 0.991 for control uptake (●), and 0.991, 0.997 and 0.998 in the presence of, respectively, 1 μM-noradrenaline (○), 10 nM-vasopressin (□) and 10 nM-angiotensin (■). Each point is the mean of triplicate determinations in one typical experiment.

Ca2+ influx is not mediated by Ca2+/Ca2+ exchange

The following experiments were done to exclude the possibility that the increase in Ca2+ influx was secondary to an increase in [Ca2+]. This could have occurred if the rapid rise in cytosolic Ca2+ concentration (resulting from the release of Ca2+ from internal stores initiated by the hormones) had promoted an influx of Ca2+ mediated by a Ca2+/Ca2+ exchange mechanism. This was tested by examining the influence of different agents which are known to mimic the hormone action by increasing [Ca2+], (Chen et al., 1978; Murphy et al., 1980; Blackmore et al., 1982) on Ca2+ influx. The mitochondrial inhibitor carbonyl cyanide m-chlorophenylhydrazone (10 μM) or the uncoupler 2,4-dinitrophenol (100 μM) applied at zero time altered neither the basal nor the hormone-stimulated Ca2+ influx (results not shown). These results clearly indicate that the Ca2+ influx initiated by noradrenaline, vasopressin and angiotensin was not a secondary consequence of changes in [Ca2+].

Time courses of the action of hormones

It is noteworthy that the effects of noradrenaline and angiotensin on Ca2+ influx were evident as early as 15 s. In contrast, Fig. 1 shows that the action of vasopressin cannot be detected at this time. If vasopressin was added 30 s before 45Ca2+, the delay in the hormone action was no longer apparent. However, in any case the duration of the lag phase cannot be precisely determined, since the Ca2+ influx was not measured between 0 and 15 s.

Fig. 2 shows the time course of the effects of maximal concentrations of noradrenaline and vasopressin added at the same time as, or 2, 4 and 6 min before, 45Ca2+. The stimulated influx was maintained as long as the cells were in the presence of
of each hormone. Fig. 2 also shows that the α-adrenergic antagonist phentolamine used at a concentration (10 μM) sufficient to abolish the reassociation of noradrenaline to its receptor rapidly reversed the stimulation. This effect was evident as early as 15s and was complete within 2 min. The Ca\(^{2+}\) influx measured in control cells or in the presence of vasopressin was not significantly altered by 10 μM-phentolamine. These results indicate that stimulated Ca\(^{2+}\) influx is directly dependent on the activation of membrane receptors by the hormones.

Dose–response curves for the hormone-stimulated Ca\(^{2+}\) influx

Fig. 3 shows dose–response curves for noradrenaline (in the presence of 5 μM-propranolol), vasopressin and angiotensin. The respective concentrations giving half-maximal responses were 0.15 μM, 0.44 nM and 0.80 nM, which are in close agreement with those obtained for Ca\(^{2+}\)-dependent phosphorylase activation (El-Refai et al., 1979; Cantau et al., 1980; Keppens et al., 1982).

![Graph showing dose-response curves for noradrenaline, vasopressin and angiotensin on Ca\(^{2+}\) influx.](image)

Fig. 2. Time course of the effect of 1 μM-noradrenaline and 10 nM-vasopressin

Rat hepatocytes (3.6 mg dry wt./ml) were incubated as indicated in the legend of Fig. 1. Noradrenaline (○) or vasopressin (□) was added at zero time, and the influx was measured for 105 s from the indicated time. When tested, 10 μM-phentolamine was added at the time indicated by the arrow; the influx was then measured in the presence of noradrenaline and phentolamine (▼). The stimulated Ca\(^{2+}\) influx is expressed as a percentage of control Ca\(^{2+}\) influx (●) (294 ± 28 pmol/min per mg dry wt.). Each point is the mean ± S.E.M. for three determinations.

Ca\(^{2+}\)-dependency of the Ca\(^{2+}\) influx

The dependency of Ca\(^{2+}\) influx on external Ca\(^{2+}\) concentration was investigated in the range 75 μM–4.8 mM. The cells were first preincubated in Eagle’s medium containing 150 μM-Ca\(^{2+}\) for 30–60 min. In preliminary experiments it was checked that the preincubation period did not alter Ca\(^{2+}\) influx subsequently determined at another Ca\(^{2+}\) concentration. Table 2 shows that identical resting and vasopressin-stimulated Ca\(^{2+}\) influxes were measured at 1.8 mM-Ca\(^{2+}\) for a 12-fold change in the Ca\(^{2+}\) concentration of the preincubation medium.

Fig. 4(a) shows that Ca\(^{2+}\) influxes determined in both control cells and hormone-treated cells were non-linearly related to external Ca\(^{2+}\) concentration. The hormones noradrenaline (1 μM), vasopressin (10 nM) and angiotensin (10 nM) stimulated Ca\(^{2+}\) influx at external Ca\(^{2+}\) concentrations higher than 150 μM. The activated Ca\(^{2+}\) influx increased up to about 2 mM-Ca\(^{2+}\) with noradrenaline and was not saturated at 4.8 mM-Ca\(^{2+}\) with the peptide hor-
Table 2. Effect of preincubation in low-Ca$^{2+}$ medium on Ca$^{2+}$ influx

Rat hepatocytes (6 mg dry wt./ml) were preincubated for 60 min in Eagle's medium containing the indicated Ca$^{2+}$ concentration. The influx was measured by adding 45Ca$^{2+}$ and CaCl$_2$ to give 1.8 mM-Ca$^{2+}$ in the incubation medium. When tested, vasopressin was added at the same time as 45Ca$^{2+}$. Results are means±S.E.M. for three determinations.

<table>
<thead>
<tr>
<th>Addition</th>
<th>[Ca$^{2+}$]$_0$ (mM) during preincubation</th>
<th>Ca$^{2+}$ influx (pmol/min per mg dry wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NaCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasopressin (10nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>191 ± 23</td>
<td>179 ± 9</td>
</tr>
<tr>
<td>1.8</td>
<td>448 ± 47</td>
<td>436 ± 30</td>
</tr>
</tbody>
</table>

Fig. 4. Influence of external Ca$^{2+}$ concentration on Ca$^{2+}$ influx

Rat hepatocytes were incubated in Eagle's medium containing 2% albumin and 150 μM-CaCl$_2$, under O$_2$/CO$_2$ (19:1). The influx was measured with or without the agonists after the addition of trace amounts of 45Ca$^{2+}$ and the concentration of CaCl$_2$ or EGTA required to give the indicated Ca$^{2+}$ concentrations. (a) Influxes were measured at the indicated Ca$^{2+}$ concentration in control cells (●) or in the presence of 1 μM-noradrenaline (○), 10nM-vasopressin (□) or 10nM-angiotensin (■). Each point is the mean of triplicate determinations in one typical experiment. (b) Hofstee plots of the data of Fig. 4(a). Linear-regression analysis yielded straight lines with correlation coefficients of 0.970, 0.960, 0.996 and 0.997 for control cells or cells incubated with noradrenaline, vasopressin and angiotensin respectively. In this typical experiment K_m and V_{max} for Ca$^{2+}$ were respectively 0.114 mM and 315 pmol/min per mg dry wt. for control cells, 0.190 mM and 499 pmol/min per mg for noradrenaline-treated cells, 0.710 mM and 1217 pmol/min per mg for vasopressin-treated cells and 1.46 mM and 2177 pmol/min per mg for angiotensin-treated cells. Mean values are given in Table 3.

Table 3. Effect of noradrenaline, angiotensin and vasopressin on K_m and V_{max} of Ca$^{2+}$ influx in rat hepatocytes

K_m and V_{max} were determined by Hofstee analysis as described in Fig. 4. Each value is the mean ± S.E.M. for n experiments.

<table>
<thead>
<tr>
<th>Addition</th>
<th>0.9% NaCl</th>
<th>Noradrenaline (1μM)</th>
<th>Vasopressin (10nM)</th>
<th>Angiotensin (10nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (mM)</td>
<td>0.121 ± 0.012</td>
<td>0.167 ± 0.030</td>
<td>0.82 ± 0.15</td>
<td>1.48 ± 0.10</td>
</tr>
<tr>
<td>V_{max} (pmol/min per mg dry wt.)</td>
<td>320 ± 22</td>
<td>421 ± 27</td>
<td>1270 ± 170</td>
<td>2140 ± 250</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

The data of Fig. 4(a) can be linearized by Hofstee plots (Fig. 4b). This indicates that Ca$^{2+}$ influx in resting isolated liver cells or after stimulation by the hormones followed Michaelis–Menten kinetics. Table 3 gives the mean values of K_m and V_{max} determined in control cells and hormone-treated cells. It shows that noradrenaline, angiotensin and vasopressin increased both kinetic parameters of Ca$^{2+}$ influx, but in different ways for each hormone.
Additivity of cell responses

A possible explanation for these discrepancies between the hormone effects on V_{max} and K_m was that different kinds of Ca$^{2+}$ channels or carriers underlie the Ca$^{2+}$ influxes caused by the three hormones. This was examined by testing the additivity of the cell responses. In these experiments maximal doses of hormones were used. Addition of vasopressin (10 nM) plus angiotensin (10 nM) or of vasopressin (10 nM) plus noradrenaline (1 µM) resulted in Ca$^{2+}$ influx which was equivalent to the response to the peptide hormones alone. It appears then that the three Ca$^{2+}$-mobilizing hormones seem to use a common pool of Ca$^{2+}$ channels or carriers to increase Ca$^{2+}$ influx in isolated rat hepatocytes.

Discussion

In the present work we have studied the kinetic properties of the unidirectional Ca$^{2+}$ influx in isolated rat hepatocytes by determining the 45Ca$^{2+}$ uptake within 105 s after the addition of the tracer. This period is short enough as compared with the time constant of exchangeable cell Ca$^{2+}$ (10–20 min) (Claret-Berthon et al., 1977; Studer & Borle, 1983) to prevent significant labelling of intracellular Ca$^{2+}$. Under these conditions, the influx of Ca$^{2+}$ is not altered by a possible redistribution of exchangeable cell Ca$^{2+}$ promoted by the hormones (Chen et al., 1978; Blackmore et al., 1978; Burgess et al., 1981). Ca$^{2+}$ influx is then only dependent on extracellular Ca$^{2+}$ and on the permeability of cell membrane (Claret-Berthon et al., 1977; Borle, 1981). Since [Ca$^{2+}$]o was experimentally fixed, any change in the initial rate of 45Ca$^{2+}$ uptake initiated by the Ca$^{2+}$-mobilizing hormones directly reflected the modifications of the translocation rate of Ca$^{2+}$ through the plasma membrane. In agreement, linear 45Ca$^{2+}$ uptake was observed over 15–105 s in the hormone-treated or in the control cells.

The hormones that increased cytosolic Ca$^{2+}$ (Murphy et al., 1980; Charest et al., 1983; Berthon et al., 1984) also stimulated Ca$^{2+}$ influx, as previously reported by others (Keppens et al., 1977; Assimacopoulos-Jeannet et al., 1977; Barritt et al., 1981). At 1.8 mM external Ca$^{2+}$ concentration, the effect of noradrenaline on Ca$^{2+}$ influx (135% of control) was substantially lower than those initiated by the peptide hormones (200–300% of control). These actions were dose-dependent and blocked by the α-adrenergic antagonist phenoxybenzamine and by the respective antagonists of vasopressin and angiotensin, namely d(CH$_2$)$_2$ tyr(et) VAVP and [1-sarcosine, 8-isoleucine] angiotensin. This confirms that they were mediated by activation of the membrane receptors to hormones. It was found that noradrenaline and angiotensin stimulated Ca$^{2+}$ influx with no apparent lag. This property was not shared by vasopressin, since its action was delayed by about 5–15 s. This is in keeping with the observation that the α-adrenergic-mediated increase in cytosolic Ca$^{2+}$ as monitored by the fluorescent Ca$^{2+}$ indicator quin 2 is complete within 5 s, whereas the action of vasopressin has not reached its peak value by this time (Charest et al., 1983; Berthon et al., 1984). The kinetics of association of [3H]angiotensin to rat hepatocytes do not differ significantly (Cantau et al., 1980; Keppens et al., 1982). The observation of a delay in the action of vasopressin thus raises the possibility that the coupling mechanism between the receptor and the Ca$^{2+}$ channel or carrier may differ from one hormone to another in isolated rat liver cells. Once it has been stimulated by the α-adrenergic agonists or by vasopressin, Ca$^{2+}$ influx is sustained as long as the agonist is bound to its receptor. The stimulating effect of noradrenaline was reversed within 2 min if phentolamine was added to prevent reassociation of the agonist to its receptor (Fig. 2). Thus it appears that the increase in Ca$^{2+}$ influx is directly related to the activation of membrane receptors by the hormones.

In the present work, we have also studied the dependence of the Ca$^{2+}$ influx on external [Ca$^{2+}$] and determined the effects of the hormones on the parameters that define the Ca$^{2+}$ influx. In resting cells, Ca$^{2+}$ influx depends on external [Ca$^{2+}$] in the range of 75 µM to about 1 mM and reaches saturation at higher concentrations. In the presence of the hormones, the increase in Ca$^{2+}$ influx occurs between 0.15 and 1.5 mM Ca$^{2+}$ for noradrenaline and between 0.3 and above 5 mM for the peptide hormones. The finding that Ca$^{2+}$ influx is very dependent on [Ca$^{2+}$]o in this range of concentration might account for the controversies about the dependency on external Ca$^{2+}$ of the hormonal responses in the liver (see Williamson et al., 1981; Exton, 1981).

Hofstee plots of the data of Fig. 4(a) fit straight lines (Fig. 4b). This indicates that the influx of Ca$^{2+}$ follows Michaelis–Menten kinetics. We can thus rule out a process of simple passive diffusion of Ca$^{2+}$ through the plasma membrane. Saturable processes have also been found for the Ca$^{2+}$ entry in both excitable cells (Hagiwara & Byerly, 1981; Kostyk, 1982) and non-excitable cells, e.g. kidney cells (Borle, 1970) or pancreatic cells (Kondo & Schulz, 1976). In contrast, non-saturable Ca$^{2+}$ influx has been reported in isolated liver cells (Parker et al., 1983). However, those authors analysed the Ca$^{2+}$ influx by curve peeling of 45Ca$^{2+}$ uptake, whereas this method cannot be used at non-steady state (see Claret-Berthon et al., 1977; Borle, 1981).
Ca$^{2+}$ influx in isolated rat liver cells

Noradrenaline, angiotensin and vasopressin increased both V_{max} and K_m of Ca$^{2+}$ influx, as determined by Hofstee plots. It is noteworthy that the increases in K_m and V_{max} initiated by the hormones were directly correlated. In other words, the order of efficiency of the hormones in increasing K_m was the same as the order of efficiency in increasing V_{max}, i.e. angiotensin > vasopressin > noradrenaline (Table 3). This observation, together with the suggestion that the hormone apparently used a common pool of Ca$^{2+}$ channels or carriers, may be explained by the model previously proposed for the effects of parathyrin in kidney cells (Borle, 1970) or the effect of pancreozymin or carbacholmolycholine in pancreatic cells (Kondo & Schulz, 1976). The Ca$^{2+}$ transport through the Ca$^{2+}$ channel or carrier may be described as follows:

$$\text{Ca}^{2+}_0 + X \xrightarrow{k_{-1}} \text{Ca}^+X \xrightarrow{k_2} X + \text{Ca}^{2+}_i$$

where Ca$^{2+}_0$ and Ca$^{2+}_i$ are the extra- and intracellular Ca$^{2+}$ and X is the Ca$^{2+}$ channel or carrier located in the membrane. In this form

$$V_{\text{max}} = k_2[X_i] \text{ and } K_m = \frac{k_{-1} + k_2}{k_{-1}}$$

One explanation involving the modification of a single factor is that the three hormones increase k_2. This could account for the parallel increases in K_m and V_{max}. According to this hypothesis, the role of noradrenaline, vasopressin and angiotensin could be to stimulate the Ca$^{2+}$ influx in rat hepatocytes by increasing the transfer rate of Ca$^{2+}$ through the channel or carrier after its binding to its recognition site and not by increasing the total number of channels nor their binding affinity for Ca$^{2+}$.

This work was supported by INSERM, FRM and C.N.R.S. We thank R. Leuillet and J. Tansini for their technical assistance.

References

Vol. 221