The detection of phosphonolipids in the protozoan Trypanosoma cruzi

Michael A. J. FERGUSON,*† Anthony K. ALLEN* and David SNARY†
*Department of Biochemistry, Charing Cross Hospital Medical School, Fulham Palace Road, London W6 8RF, U.K., and †Department of Immunochemistry, Wellcome Research Laboratories, Beckenham, Kent BR3 3BS, U.K.

(Received 22 June 1982/Accepted 16 July 1982)

2-Aminoethylphosphonate was detected in the acid hydrolysates of the phosphonolipids and the lipopeptidophosphoglycan of Trypanosoma cruzi, the causative agent of Chagas' disease. This finding represents the first evidence of phosphonolipids in a zooflagellate. By comparison, no phosphonolipids were detected in Trypanosoma brucei, indicating that phosphonolipids are not a ubiquitous feature of the Order Kinetoplastida.

Trypanosoma cruzi, a parasitic protozoan of the Order Kinetoplastida, is the organism responsible for South American trypanosomiasis (Chagas' disease). T. cruzi has a complex host–vector life-cycle, existing in the mammalian host as an intracellular dividing form (amastigote) and as a non-dividing bloodstream form (trypanastigote). In the insect vector it exists in the gut as a dividing form (epimastigote), and the infection is transmitted to the mammalian host via the non-dividing metacyclic form in the insect faeces.

Phosphonolipids are phospholipids with a direct bond between the phosphorus atom and a carbon atom of the nitrogenous base in the place of the normal phosphoester linkage. Their occurrence and biochemistry have been reviewed by Rosenberg (1973). Phosphonolipids have been detected in endogenous lipids of eukaryotic cells in the Phyla Protozoa, Coelenterata and Mollusca. Within the Phylum Protozoa phosphonolipids have so far been found in ciliates (Liang & Rosenberg, 1966; Dawson & Kemp, 1967), in amoebae (Korn et al., 1974) and in phytoflagellates (H. Rosenberg, personal communication). We now report here the presence of low concentrations of 2-aminoethylphosphonate in the acid hydrolysates of both T. cruzi epimastigote lipids and the epimastigote lipopeptidophosphoglycan (De Lederkremer et al., 1977, 1978), which is a cell-surface glycoconjugate. No 2-aminoethylphosphonate was detected in similar studies with the African trypanosome Trypanosoma brucei.

Experimental

Parasite culture

T. cruzi epimastigotes were a clone (Well. Tryp. Y,C1) derived from the Y strain. Epimastigotes were grown in culture at 25°C in the medium of Boné & Parent (1963) containing 5% (v/v) rabbit serum, penicillin (200 μg/ml) and streptomycin (100 units/ml). Biosynthetic radiolabelling with 32P was performed by incubating 10⁴ epimastigotes in 5 ml of RPMI 1640 medium (Flow Laboratories, Irvine, Scotland, U.K.) containing 5% (v/v) foetal calf serum with 1 mCl of 32P (Amersham International) at 25°C for 24 h. After incubation the cells were washed twice in phosphate-buffered saline (0.14 M NaCl/0.01 M-sodium phosphate buffer, pH 7.2) at 4°C.

T. brucei procyclins (insect gut form) were strain S42, isolated from an adult female warthog (Phacochoerus aethiopicus Pallus) in Tanzania by Dr. J. R. Baker. They were cultured in the medium of Brun & Schonenberger (1979). T. brucei trypomastigotes (host bloodstream form) were a clone (MIT at 1.4) derived from strain 427 (Cross, 1975), and were prepared from infected rat blood by the method of Lanham & Godfrey (1970).

Preparation and processing of extracts

Total lipid extracts were obtained by extracting cell pastes three times with 20 vol. of chloroform/methanol (2:1, v/v). Extracts were washed three times with water and dried under a stream of N₂.

The lipopeptidophosphoglycan, which is insoluble in chloroform/methanol, was prepared from T. cruzi epimastigotes by phenol extraction followed by chloroform/methanol/water extraction by the method of De Lederkremer et al. (1977).

Acid hydrolysis of the lipid preparations was performed in 6 M-HCl for 48 h at 120°C in sealed tubes. Under these vigorous conditions all phosphoester and diester bonds are cleaved to yield P₃ by contrast, the highly stable C–P bond of phosphoryl compounds is conserved (Liang & Rosenberg, 1966; Rosenberg, 1973). The hydrolysate of the 32P-labelled epimastigote lipids was dried in vacuo over...
P₂O₅ and NaOH and redissolved in a small volume of water for subsequent analysis for 2-aminoethylphosphonate. The hydrolysates of the lipopeptidophosphoglycan and bulk T. cruzi and T. brucei lipid preparations were extracted three times with hexane to remove released fatty acids and filtered through Whatman GF/F paper to remove charred products.

2-Aminoethylphosphonate in these samples was enriched by passing the neutralized hydrolysate through a column of Dowex 1 X2 (acetate form) (Liang & Rosenberg, 1966). This procedure allows the elution of most of the amino acids with water and gives quantitative yields of 2-aminoethylphosphonate when the column is eluted with 5% (v/v) acetic acid. Bound Pi from ordinary phospholipids was quantitatively removed by subsequent elution with 2M-HCl. The 2-aminoethylphosphonate fractions were dried and redissolved in a small volume of water for analysis.

**Analytical methods**

2-Aminoethylphosphonate was identified by high-voltage paper electrophoresis (Atfield & Morris, 1961) on Whatman 3MM paper in 0.73M-acetic acid/0.27M-formic acid buffer, pH 1.9, at 100 V/cm for 40 min on a Shandon cooled platten apparatus. 2-Aminoethylphosphonate was detected by spraying electrophoretograms with ninhydrin/cadmium reagent (Atfield & Morris, 1961) and heating at 80°C for 30 min. 32P-labelled 2-aminoethylphosphonate was detected by radioautography at −70°C with Kodak X-omat film and Kodak X-omat regular intensifying screens.

2-Aminoethylphosphonate was determined quantitatively by using a Locarte Mini amino acid analyser; the 25 cm × 0.9 cm column was successively eluted with 0.2M-sodium citrate buffer, pH 2.6, for 120 min and 0.2M-sodium citrate buffer, pH 4.4, for 180 min, at a flow rate of 30 cm/h at 50°C. The internal standard was p-fluorophenylalanine. Organic phosphate was assayed by the method of Bartlett (1959).

**Results**

Phospholipids of T. cruzi were biosynthetically labelled with 32P for 24 h, extracted into chloroform/methanol and hydrolysed with 6M-HCl under vigorous conditions. The hydrolysate was examined by high-voltage paper electrophoresis. The radioautograph (Fig. 1) of the electrophoretogram showed two radioactive components that had migrated from the origin, one a fast-moving heavily labelled anion and the other a slow-moving cation. The former corresponded to Pi, derived from 32P-labelled phospholipids, and the slow-moving cation was shown to co-migrate with an authentic 2-aminoethylphosphonate standard. This result establishes the presence of low concentrations of phospholipids in T. cruzi epimastigotes.

The electrophorograms of the 2-aminoethylphosphonate fractions from the acid hydrolysates of bulk lipid preparations of T. cruzi epimastigotes and T. brucei procyclics are shown in Fig. 2. The result again demonstrates the presence of 2-aminoethylphosphonate in phospholipids in T. cruzi epimastigotes, but shows a definite lack of 2-aminoethylphosphonate in T. brucei procyclics. (Similar studies also failed to find evidence for 2-aminoethylphosphonate in the bloodstream form of T. brucei; results not shown.) The 2-aminoethylphosphonate in these fractions was determined quantitatively by using the amino acid analyser system. These results for phosphonyl phosphorus are compared with the values for phosphoryl phosphorus recovered from the Dowex columns (Table 1).

The T. cruzi epimastigote lipopeptidophosphoglycan was also shown to contain 2-aminoethylphosphonate. Fig. 3 shows the presence of a faint ninhydrin-positive band from the lipopeptidophosphoglycan hydrolysate co-migrating with an authentic 2-aminoethylphosphonate standard. The results of quantitative analysis for 2-aminoethylphosphonate and phosphate in this material are given in Table 1.
### Table 1. Comparison of phosphonate contents of *T. brucei* and *T. cruzi* lipid fractions

<table>
<thead>
<tr>
<th>Material analysed</th>
<th><em>T. brucei</em></th>
<th><em>T. cruzi</em></th>
<th><em>T. cruzi</em> epimastigote lipid lipopeptidophosphoglycan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>procyclic lipid</td>
<td>epimastigote lipid</td>
<td>lipopeptidophosphoglycan</td>
</tr>
<tr>
<td>Amount of material hydrolysed (mg dry wt.)</td>
<td>21</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Phosphoryl phosphorus content (nmol/mg)</td>
<td>648</td>
<td>481</td>
<td>575</td>
</tr>
<tr>
<td>Phosphonyl phosphorus content (nmol/mg)</td>
<td>&lt;0.05</td>
<td>1.66</td>
<td>36.0</td>
</tr>
<tr>
<td>Phosphonyl phosphorus content (% of total phosphorus content)</td>
<td>&lt;0.01</td>
<td>0.34</td>
<td>5.9</td>
</tr>
</tbody>
</table>

To verify the identification of 2-aminoethylphosphonate, a sample of lipopeptidophosphoglycan hydrolysate was subjected to high-voltage paper electrophoresis and stained lightly with ninhydrin, and the putative 2-aminoethylphosphonate band was cut out and eluted with water. This solution was run on the amino acid analyser system used for quantification. One ninhydrin-positive component, with the same retention time as authentic 2-aminoethylphosphonate, was observed. The identification of 2-aminoethylphosphonate by these two independent methods firmly establishes its identity.

### Discussion

Previous reports have excluded the possibility of alkylphosphonic acid as a component of the lipopeptidophosphoglycan (De Lederkremer *et al.*, 1976) and indicated an absence of phosphonolipids from *T. cruzi* epimastigotes (Da Silveira & Colli, 1981). However, both of these statements were made on the basis that their results for total phosphorus and acid-hydrolysable phosphorus were in close agreement, This would indeed be the case, as
phosphonates are present only in very low concentrations in *T. cruzi* lipids and lipopeptidophosphoglycan and are probably only detectable by positive identification, as done in the present study. Da Silveira & Colli (1981), however, do present some indirect evidence for the existence of other phosphonate-containing molecules in lipid-free membrane preparations from *T. cruzi* epimastigotes.

The phospholipids of *T. cruzi* represent only 0.34% of the total phospholipid population. This concentration is very low compared with those reported in other protozoa (cf. 24% in rumen protozoa (Dawson & Kemp, 1967), 23% in *Tetrahymena pyriformis* (Smith & O'Malley, 1978), and is more in line with the values reported for some bacteria (Horiguchi, 1966). Owing to the low concentrations of phosphonolipids in *T. cruzi*, the actual phosphonolipid species have not been identified. But, as phosphatidylethanolamine is a predominant phospholipid species in *T. cruzi* (Da Silveira & Colli, 1981), it is possible that its phosphoryl analogue would be the major phosphonolipid.

The role of phosphonolipids is largely unknown, although their resistance to hydrolytic enzymes, in particular phospholipase D, might confer some advantage to an organism in a hostile or competitive environment (Kennedy & Thompson, 1970). This hypothesis is also consistent with the fact that, with very few exceptions, organisms containing phosphonolipids present a naked living membrane to their environment (Rosenberg, 1973), and *T. cruzi* falls into this category. However, it is difficult to see how such a low concentration of phosphonolipids in *T. cruzi* could be of any advantage in this context. It might be that *T. cruzi* is weakly expressing a characteristic inherited from a more primitive free-living ancestor, the evolutionary advantage of having phosphonolipids having been lost when it adopted its host–vector life-cycle.

The total absence of phosphonolipids from *T. brucei* procyclines is not particularly surprising. *T. cruzi* and *T. brucei* exist in geographically distinct regions, and it is generally accepted that, although they are probably derived from a common free-living ancestor, the two subgenera to which they belong probably diverged very early and evolved separately (Lumsden, 1974).

The presence of 2-aminoethylphosphonate as a component of the lipopeptidophosphoglycan is a finding worthy of note. Although the small quantities of 2-aminoethylphosphonate in this compound probably preclude it from being an obligatory component, it might be inferred that its phosphoryl analogue, phosphoethanolamine, is an obligatory component. A potentially similar molecule, the lipophosphonoglycan from *Acanthamoeba castellanii*, has also been shown to contain 2-aminoethylphosphonate and 2-amino-1-hydroxyethylphosphonate (Korn et al., 1974; Dearborn et al., 1976), although in much greater amounts (10% aminophosphonates). However, the relative enrichment of phosphoryl to phosphoryl phosphorus in the lipopeptidophosphoglycan as compared with the phospholipids of *T. cruzi* might suggest some structural advantage of C–P bonds in these complex protozoal glycoprophospholipids.

This is the first evidence for phosphonolipids in a zooflagellate, although H. Rosenberg (personal communication) has found 2-aminoethylphosphonate in two phytoflagellates, *Euglena gracilis* and *Amphidinium* sp. (a dinoflagellate). The absence of 2-aminoethylphosphonate from *Trypanosoma brucei* lipids indicates, however, that phosphonolipids are not a ubiquitous feature of the Order Kinetoplastida.

We thank Mr. M. A. Smith for his help with the cell cultures. M. A. J. F. thanks the Science and Engineering Research Council for a CASE studentship.

**References**


Cross, G. A. M. (1975) *Parasitology* 71, 393–417


