The internal pH and membrane potential of the insulin-secretory granule

John C. HUTTON
Department of Clinical Biochemistry, University of Cambridge, New Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, U.K.

(Received 9 November 1981/Accepted 22 December 1981)

The membrane potential (ΔΨ) and the pH gradient (ΔpH) across the membrane of the insulin-secretory granule were determined in studies in vitro from the uptake of the permeant anion thiol\(^{14}\text{C}\)cyanate or the permeant base \(^{14}\text{C}\)methylamine. Freshly prepared granules incubated in iso-osmotic medium containing sucrose and low concentrations of buffer salts exhibited an acidic internal pH and a ΔΨ positive inside. Addition of \(\text{MgATP}^2\)– under these conditions did not alter the ΔpH, but produced a marked increase in the ΔΨ. Conversely, when a permeant anion was also included, ATP produced a marked increase in the ΔpH and a lesser increment in the ΔΨ. \(\text{NH}_3^+\) salts reduced the ΔpH across granule membranes. In the presence of ATP this effect was accompanied by a reciprocal increase in the ΔΨ. A similar reciprocity was evident when nigericin was added together with \(\text{K}^+\) or on decreasing the medium pH, suggesting that these gradients were linked by a common electrogenic process. The effects of ATP were reversed by the protonophore carbonyl cyanide \(p\)-trifluoromethoxyphenylhydrazone, the combination of valinomycin, nigericin and \(\text{K}^+\), and by the \(\text{Mg}^{2+}\)-dependent ATPase inhibitor tributyltin. Uptakes of \(^{14}\text{C}\)-labelled tracer molecules were also markedly reduced by cryogenic disruption of the granule membrane or hypo-osmotic incubation conditions. These results were readily interpreted within a chemiosmotic hypothesis, which proposed that the insulin granules possess an inwardly-directed electrogenic proton-translocating \(\text{Mg}^{2+}\)-dependent ATPase with the additional postulate that the membrane has a low proton permeability. The intragranular pH was estimated as being between 5 and 6 in vivo. Such a value corresponds to optimal conditions for the crystallization of zinc–insulin hexamers. Several other functions related to chemiosmotic processes within insulin granules, however, may be envisaged.

The maintenance of pH gradients across intracellular membranes of mammalian cells, be they linked to respiration, ATP hydrolysis or a Donnan equilibrium, appear to relate to diverse physiological functions. Proton gradients in mitochondria are associated with energy transduction, ATP synthesis and ion transport; in the lysosome the acidic interior matches the acidic pH optima of many of its constituent enzymes; in the neurosecretory vesicle of the neurohypophysis the internal pH corresponds to the maximal stability of the hormone–neurophysin complex, and in the chromaffin granule of the adrenal medulla the pH gradient is operative in the uptake and storage of its secreted product (for review, see Roos & Boron, 1981; Russell & Holz, 1981).

Viewed within this context, the observation that insulin-secretory granules possess a proton-translocating \(\text{Mg}^{2+}\)-dependent ATPase activity (Hutton & Peshavaria, 1982) may have a particular bearing on the constitution and function of these organelles. The present paper documents the ΔpH and ΔΨ across the membrane of the insulin-secretory granule as determined from the uptake of a radioisotopically-labelled permeant base or anion in vitro. The objectives of these studies were to estimate the prevailing internal pH of the granule in vivo and to test further the chemiosmotic model proposed for the function of the proton-translocating \(\text{Mg}^{2+}\)-dependent ATPase activity in the granule membrane.

Experimental

Materials

Insulin-secretory granules were prepared from a transplantable rat islet-cell tumour (Chick et al., 1977) by a combination of differential centrifugation...
tion and density-gradient centrifugation on Percoll gradients as previously described (Hutton & Peshavaria, 1982). These were suspended at 2—5 mg/ml at 4°C and used within 4 h.

[14C]Methylamine hydrochloride (sp. radioactivity 60 Ci/mol), potassium thiocyanate (sp. radioactivity 60 Ci/mol), inulin[14C]carboxylic acid (sp. radioactivity 6 Ci/mol) and 3H2O (5 Ci/ml) were obtained from The Radiochemical Centre, Amersham, Bucks., U.K. Nigericin was a gift from Roche Products, Welwyn Garden City, Herts., U.K., tributyltin was obtained from Ralph N. Emmanuel, Alperton, Middx., U.K., and other chemicals from Sigma (London) U.K., Kingston upon Thames, Surrey, U.K., or BDH, Poole, Dorset, U.K.

Determination of ΔH and ΔΨ

Radioisotope distribution experiments were performed in medium containing (final concentration) 0.25 mM-sucrose, 0.5 mM-EGTA, 1 mM-MgSO4 and 25 mM-4-morpholine-ethanesulphonic acid adjusted to the desired pH with Tris base. ATP (final concentration 3.3 mM) was added with an equimolar quantity of MgSO4 from a solution adjusted to the same pH with Tris base. Other additions are described in the Results section. Where relevant, control incubations contained the solvent dimethyl sulphoxide, which by itself did not affect any parameter determined in the present paper. Under the conditions used, less than 20% of the available ATP was hydrolysed and the medium pH at completion of the incubation was found to differ by less than 0.05 units from its initial value.

For each experimental condition duplicate or triplicate determinations were made in medium containing 5 μCi of 3H2O/ml combined with one of the following radioisotopes; 1 μCi of [14C]methylamine/ml (ΔH), 1 μCi of thiocyanate/ml (ΔΨ) or 2.5 μCi of inulin[14C]carboxylic acid/ml (extragranular water space). Granules suspended in 120 μl of medium at about 0.4 mg of protein/ml were incubated at 37°C for 20 min in a 1 ml capacity Eppendorf microfuge tube (W. Sarstedt, Leicester, U.K.) and then pelleted by centrifugation at room temperature for 4 min at 9500g. Water-saturated dibutyl phthalate (300 μl) was added to each tube and a further centrifugation for 10 s performed to partition the aqueous medium from the granule pellet. The tube tip was removed with a scalpel blade, transferred to a scintillation vial containing 0.5 ml of water and 5 ml of a Triton X-100/toluene-based scintillation cocktail (mixture T; Hopkin and Williams, Chadwell Heath, Essex, U.K.) and the radiisotopic composition determined by dual-channel liquid-scintillation spectrometry (Packard Instruments, Downers Grove, IL, U.S.A.). Control incubations contained all constituents except the granule suspension and were treated in an identical manner. The radioactivities found in these controls were less than 10% of those in the presence of granules and were subtracted from the experimental values.

Calculations

The internal water space of the granule was calculated from the difference in the apparent spaces of distribution of 3H2O and inulin[14C]carboxylic acid divided by the pellet-protein content. This was not found to vary significantly within any experimental condition using intact granules. The mean intragranular space was 2.00 ± 0.10 μl/mg of protein (n = 189) and represented between 30 and 60% of the total water space found in each pellet.

The ΔΨ and the ΔpH across the granule membrane were calculated from the following formulae:

\[
ΔΨ = 60 \cdot \log \left(\frac{R_1 - R_i}{1 - R_i} \right) \tag{1}
\]

and

\[
ΔpH = -\log \left(\frac{R_m - R_i}{1 - R_i} \right) \tag{2}
\]

where \(R_m, R_m \) and \(R_i \) were the ratios of radioactivity from thiocyanate, [14C]methylamine and inulin[14C]carboxylic acid respectively to that of 3H2O found in the same pellet. The pH gradient could be converted into units identical with those of the membrane potential by its product by —60, which thus allowed the calculation of the proton potential (ΔμH+) according to the equation:

\[
ΔμH^+ = -60 \cdot ΔpH + ΔΨ (mV)
\]

The theoretical and practical aspects of these methods and calculations have been extensively reviewed (Rottenberg, 1979; Roos & Boron, 1981).

Protein was determined by the method of Lowry et al. (1951) after precipitation of the samples with 5% (w/v) trichloroacetic acid with bovine serum albumin (fraction V; Sigma) as standard.

The statistical significance of differences of means was estimated by Student's t test for unpaired data. Since ΔpH and ΔΨ measurements did not follow a Gaussian distribution, statistical analyses were conducted on the ratios of intragranular to extragranular concentrations of [14C]methylamine or of thiocyanate. These ratios are represented by the terms in parentheses in the above equations.

Results

Insulin granules incubated in the presence of MgATP2− accumulated [14C]methylamine or thiocyanate 5—10-fold relative to the initial concentration of these isotopes in the surrounding medium. Examination of the time course of uptake
showed that thiol[14]Ccyanate had equilibrated within 5 min and did not change within 30 min. [14]C-Methylamine uptake, however, was slower, reaching a steady state only after 15 min. Markers of the total volume (3H\textsubscript{2}O) and extragranular water space (inulin[14]Ccarboxylic acid) had equilibrated by 5 min and were unchanged thereafter.

Granules that were subjected to four cycles of freeze–thawing or incubated under hypo-osmotic conditions accumulated much smaller amounts of [14]Cmethylamine and thiol[14]Ccyanate than controls (Table 1). This was apparent whether results were expressed in terms of the ratio of intragranular to extragranular concentration or as the specific radioactivity of the pelleted material. In control incubations 74% of the protein added initially was recovered in the final pellet. After freeze–thaw treatment and hypo-osmotic incubation the recovery was reduced to 52% and 54% respectively. These differences, however, were not of a sufficient magnitude to account for the present results. These findings suggested that the majority of the [14]Cmethylamine and thiol[14]Ccyanate accumulation by intact granules was attributable to the presence of pH and potential differences across sealed membranes. The results obtained under hypo-osmotic conditions indicated that the maximum contribution of a non-specific binding component to the total uptake was less than 10%. The relative efficacies of cryogenic disruption and hypo-osmotic treatment to diminish granule [14]Cmethylamine or thiol[14]Ccyanate uptake matched their relative capacities to increase Mg2+-dependent ATPase activity in granules (Hutton & Peshavaria, 1982).

Radioisotopic uptake studies performed with 5 or 25 \textmu M concentrations of the tracer molecules gave identical intragranular/extragranular concentration ratios with those observed in control incubations at 16 \textmu M. This suggested that these compounds did not alter the electrochemical gradients they had been used to monitor.

Table 1. Effect of membrane perturbation on [14]Cmethylamine and thiol[14]Ccyanate uptake by insulin-secretory granules

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total water space (\textmu M/mg)</th>
<th>Extragranular space (\textmu M/mg)</th>
<th>Intragranular [14]Cmethylamine (nmol/mg)</th>
<th>Intragranular thiol[14]Ccyanate (nmol/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.73 ± 0.11 (11)</td>
<td>1.95 ± 0.11 (10)</td>
<td>302 ± 36 (5)</td>
<td>145 ± 12 (5)</td>
</tr>
<tr>
<td>Cryogenic disruption</td>
<td>2.82 ± 0.06 (7)*</td>
<td>2.07 ± 0.06 (8)</td>
<td>55 ± 1 (4)*</td>
<td>38 ± 10 (4)*</td>
</tr>
<tr>
<td>Osmotic disruption</td>
<td>2.45 ± 0.16 (12)*</td>
<td>0.96 ± 0.13 (3)*</td>
<td>32 ± 6 (4)*</td>
<td>12 ± 2 (4)*</td>
</tr>
</tbody>
</table>

*P < 0.001

Effects of ATP, tributylin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone

Granules incubated without ATP in medium containing sucrose and low concentrations of buffer salts maintained a \Delta p\textsubscript{H} of approximately unity, acidic inside, across their membranes (Table 2). A \Delta \Psi of about 20 mV was also evident, positive with regard to the interior.

The addition of MgATP2+ to the incubation medium did not significantly affect the \Delta p\textsubscript{H} under these conditions but resulted in a substantial increase in the \Delta \Psi and hence the \Delta p\textsubscript{H+} (P < 0.005).

Tributylin did not significantly affect either the \Delta p\textsubscript{H} or \Delta \Psi in granules incubated without ATP but prevented the ATP-induced increment in \Delta \Psi. The effect might be attributed either to inhibition of the granule Mg2+-dependent ATPase activity (Hutton & Peshavaria, 1982) or to an anion/OH- exchange that this compound can catalyse (Stockdale et al., 1970). Such anions would need to be derived from the granule itself since no permeant anion was added in the present circumstance. Also in the latter case a substantial effect on the \Delta p\textsubscript{H} would be expected in both the presence and absence of ATP.

Carbonyl cyanide p-trifluoromethoxyphenylhydrazine, which releases the membrane-imposed control of ATP hydrolysis in intact granules (Hutton & Peshavaria, 1982) also prevented the ATP-induced increment in the \Delta \Psi (P < 0.001) and additionally caused a decrease in the \Delta p\textsubscript{H} both in the presence (P < 0.005) or absence (P < 0.005) of ATP. Such effects were consistent with its capacity as a protonophore to discharge electrochemical gradients resulting from proton translocation.

The low or negative \Delta \Psi values observed in incubations containing either tributylin or carbonyl cyanide p-trifluoromethoxyphenylhydrazine could not be accurately determined by the present technique based on thiol[14]Ccyanate uptake. The lower limit of reliable estimation was approx. +10 mV; this
represents a 20% increase in the space of distribution of the tracer over that of 3H$_2$O in the pelleted material and was at a level where small variation in the extragranular water space and non-specific binding effects could affect calculations.

Response of the ΔpH and $\Delta \Psi$ to changes in medium pH

Decreasing the medium pH in the range of 7.2 to 5.9 greatly increased the $\Delta \Psi$ and decreased the ΔpH across granule membranes in the presence of ATP. The changes in pH expressed in mV was reciprocated by the change in the $\Delta \Psi$, thus suggesting that the ΔpH and $\Delta \Psi$ were linked by a common electrogenic process.

In the absence of ATP the ΔpH also decreased as a function of decreasing external pH. The response of the $\Delta \Psi$ under these conditions, however, could not be reliably ascertained because of the above-mentioned technical limitations.

Effects of different K$^+$ salts

In the absence of ATP the addition of K$^+$ to the incubation medium, whether in the form of K$_2$SO$_4$, KCl or KI, resulted in a decrease in the ΔpH across the granule membrane ($P < 0.001$) but did not affect the $\Delta \Psi$ in a consistent manner (Table 3).

ATP induced an increase in the $\Delta \Psi$ and no change in the ΔpH in the presence of K$_2$SO$_4$, similar to its effects in medium containing sucrose alone. By contrast, when the anion was Cl$^-$ or I$^-$, a large increase in the ΔpH was observed on ATP addition. This was accompanied by a smaller increment in the $\Delta \Psi$ than that observed in the presence of sucrose alone, thus the overall ATP-induced change in ΔpH was not substantially altered.

Previous studies suggested that the insulin-granule membrane is more permeable to Cl$^-$ or I$^-$ than to SO$_4^{2-}$ (Hutton & Peshavaria, 1982). Inwardly directed ATP-driven proton movements, if accompanied by Cl$^-$ or I$^-$ permeation, would lead to the
DpH and ΔΨ of insulin granules

Electroneutral accumulation of a strong acid within the granule interior, thus accounting for the present observations.

Secretory granules obtained from the neurohypophysis or adrenal medulla release their internal contents after incubation in the presence of KCl and ATP (Poisner & Trifaro, 1967; Poisner & Douglas, 1968). Insulin granules under similar conditions are reportedly stable (Howell et al., 1969). Granule lysis did not occur in the present experiments at least as judged from the finding that the internal volume of the granule was not affected by different K⁺ salts or ATP (J. C. Hutton, unpublished work). It should be noted also that the present media were hyperosmolar and contained lower concentrations of the various K⁺ salts than those used by the above authors.

Effects of NH₄⁺ salts

The addition of either (NH₄)₂SO₄ or NH₄Cl to granules incubated without ATP markedly reduced the DpH across their membranes without significantly altering the ΔΨ (Table 4). Similar effects of NH₄⁺ on the DpH have been inferred from examination of 9-aminoacridine fluorescence quenching by granule-enriched fractions from pancreatic islets (Abrahamsson & Glyfe, 1980).

In the presence of ATP, these NH₄⁺ salts still reduced the DpH across the granule membrane; however, the ATP-induced increment in ΔΨ was far greater. The ΔμH⁺ nevertheless was not substantially affected.

(NH₄)₂SO₄ was more effective than NH₄Cl in producing these changes, at least when comparison was made with results obtained without added salts (Table 4). Compared with experiments performed at similar concentrations of their respective K⁺ salts (Table 3) the effect of NH₄Cl on the DpH was actually more pronounced than that of (NH₄)₂SO₄, the converse being true for the effect on the ΔΨ.

Investigation of the concentration dependency of the DpH changes induced by (NH₄)₂SO₄ in the absence of ATP revealed significant effects at concentrations as low as 10 mM with virtual abolition of the DpH at 100 mM (J. C. Hutton, unpublished work).

These effects of NH₄⁺ were readily interpretable within the proposed chemiosmotic model. The permeation of the granule by the uncharged NH₃ molecule would be expected to neutralize the DpH across the membrane whether ATP is present or not. Proton translocation induced by ATP would be accompanied by the inward flux of NH₄⁺ and hence the expression of the ΔμH⁺ principally as its ΔΨ component. The concomitant presence of a permeant anion would exaggerate the change in DpH induced by NH₄⁺ while reducing the ΔΨ.

Effects of nigericin and valinomycin

The electrogenic K⁺ ionophore valinomycin added to granules incubated with K₂SO₄ and ATP did not significantly affect either the DpH or the ΔΨ across their membranes (Table 5). The K⁺ content of freshly isolated granules was 30–40 mg ion/mg of protein, i.e. approx. 15–20 mg ion/litre of intragranular water (J. C. Hutton, unpublished work). The extragranular K⁺ concentration being 25 mg ion/litre, the contribution of the transmembrane K⁺ gradient to the ΔΨ in the presence of valinomycin would have been minor. Studies of chromaffin-granule ghosts in any case indicate that any K⁺/valinomycin-induced potential (Njus & Radda, 1979) may have decayed during the course of the subsequent incubation.

Nigericin, which under present conditions would catalyse an H⁺/K⁺ exchange across the granule membrane, produced a large decrease in the DpH in the presence of ATP while promoting a reciprocal increase in the ΔΨ. These findings, which were equivalent to the effects of NH₄⁺, can be accounted

Table 4. Effect of NH₄⁺ salts on the DpH and ΔΨ across the insulin-granule membrane

<table>
<thead>
<tr>
<th>Addition</th>
<th>Methylamine-uptake ratio</th>
<th>Thiocyanate-uptake ratio</th>
<th>DpH</th>
<th>ΔΨ (mV)</th>
<th>ΔμH⁺ (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>17.86 ± 1.81 (20)</td>
<td>1.78 ± 0.58 (20)</td>
<td>1.25</td>
<td>15.0</td>
<td>90.0</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>4.00 ± 0.72 (10)*</td>
<td>1.83 ± 0.25 (10)</td>
<td>0.60</td>
<td>15.8</td>
<td>51.8</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>4.42 ± 0.39 (4)*</td>
<td>0.42 ± 0.42 (4)</td>
<td>0.65</td>
<td><10.0</td>
<td>—</td>
</tr>
<tr>
<td>ATP</td>
<td>15.39 ± 1.45 (20)</td>
<td>6.78 ± 0.92 (20)</td>
<td>1.19</td>
<td>49.9</td>
<td>121.1</td>
</tr>
<tr>
<td>ATP + (NH₄)₂SO₄</td>
<td>4.28 ± 0.50 (20)*</td>
<td>15.00 ± 0.50 (20)*</td>
<td>0.63</td>
<td>70.6</td>
<td>108.4</td>
</tr>
<tr>
<td>ATP + NH₄Cl</td>
<td>7.33 ± 0.89 (4)*</td>
<td>9.58 ± 1.36 (4)</td>
<td>0.87</td>
<td>58.8</td>
<td>110.8</td>
</tr>
</tbody>
</table>

Vol. 204
for by the proposed dependence of these gradients on a proton-translocating ATPase with the further postulate that the granule membrane has a relatively low permeability to K+. Evidence for the latter was obtained from studies of Mg$^{2+}$-dependent ATPase activity in intact granules (Hutton & Peshavaria, 1982).

The combination of nigericin and valinomycin reduced both the ΔpH and the ΔΨ across the granule membrane in the presence of ATP, an effect that was dependent on the simultaneous presence of K$_2$SO$_4$. Under such conditions valinomycin could discharge the electrochemical K$^+$ gradient produced by the proton-translocating ATPase acting in concert with nigericin. The concomitant decrease in both the ΔpH and ΔΨ under these conditions suggested that the thermodynamic constraint to vectorial proton translocation was removed. Consistent with this was the finding that the membrane-imposed control of ATP hydrolysis was markedly reduced under such incubation conditions (Hutton & Peshavaria, 1982).

The combination of valinomycin, nigericin and K$^+$ also significantly reduced the ΔpH and ΔΨ across the membrane of granules incubated without ATP. In achieving a reduction in the ΔpH under these conditions it was more effective than carbonyl cyanide p-trifluoromethoxyphenylhydrazone (Table 2).

Discussion

Proton-translocating Mg$^{2+}$-dependent ATPase activity in insulin granules

The effects of ATP on the ΔpH and ΔΨ across the membrane of the insulin granule under a variety of experimental conditions were entirely consistent with the chemiosmotic model formulated previously (Hutton & Peshavaria, 1982). This suggested that secretory-granule membranes possess an inwardly directed proton-translocating Mg$^{2+}$-dependent ATPase activity and low proton permeability. Experimental treatments that disrupted the granule (Table 1) or increased its permeability to protons (Tables 2 and 5) reduced its capacity to respond to ATP by changes in ΔpH or ΔΨ. Inhibition of Mg$^{2+}$-dependent ATPase activity by tributyltin had a similar effect (Table 2). Results obtained after modification of the medium pH (Fig. 1), inclusion of nigericin (Table 5), a permeant base (Table 4) or permeant anion (Table 3) demonstrated the ΔpH and were linked to a common electrogenic process in the presence of ATP. Indeed incubation conditions could be chosen that would couple ATP hydrolysis by the granule to either the ΔpH or ΔΨ component of the protonmotive force.

The intragranular pH in vivo

Fresly isolated granules incubated in the absence of ATP at pH 7 had an internal pH of 6 or below. Extrapolation of data obtained at different medium-pH values (Fig. 1) to a null ΔpH across the membrane suggested a minimum value of 5 to 5.5. Such internal acidification could have been established by Mg$^{2+}$-dependent ATPase activity in vivo before isolation of the granule and maintained by internal buffers such as P$_1$ and proteins (Hutton et al., 1980). A Donnan equilibrium related to insulin and no other acidic proteins in the granule interior could similarly explain these findings. Possibly both mechanisms were operative, since the resting ΔpH could be reduced, but only partially, by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (Table 2) or the combination of valinomycin, nigericin and K$^+$ (Table 5). The resting ΔpH was also affected by the ionic composition of the medium (Table 3) suggestive of a Donnan equilibrium phenomenon.
Estimation of the intragranular pH in vivo must take into account several factors, including, as illustrated in the present study, the cytosolic pH, the presence of ATP and the concentration of permeant anions and bases. The intracellular pH of isolated pancreatic islets determined from their uptake of 5,5-dimethylxazolidin-2,4-one is in the range 7–7.2 (Hellman et al., 1972; Sener et al., 1978). Such bulk-phase measurements are unlikely to indicate the true cytosolic pH, which may, in any case, be subjected to localized variation as revealed by microelectrode determinations in other cells (for review, see Roos & Boron, 1981). Nevertheless, if these values are assumed, and given that the ΔμH⁺ across granule membrane in the presence of ATP (about 120mV) were expressed entirely as the ΔpH (about 2 units) the minimum intragranular pH would be 5.0 to 5.2. If the internal pH of freshly isolated granules is assumed as a maximal estimate then the physiological range may be from 5 to 6.

Relationship of pH to insulin storage

The calculated internal pH of the insulin secretory granule approximates the isoelectric point of insulin and corresponds to the pH region of the lowest solubility of the protein either as the free form or the Zn²⁺-insulin complex (Frederiq & Neurath, 1950; Tanford & Epstein, 1954b). Insulin precipitates, however, may be produced over a broad pH range (pH 4–8 at 5mg/ml; Tanford & Epstein, 1954b); thus the regulation of the internal pH may not be critical to this activity. The intragranular insulin concentration calculated on the basis of data in the previous publication (Hutton & Peshavaria, 1982) using an intragranular water space of 2μl/mg of protein (Table 1) was 200mg/ml of intragranular water.

The intrinsic dissociation constant of the histidine residues in insulin responsible for its high-affinity binding of Zn²⁺ have been estimated as 6.0 or 6.4 (Tanford & Epstein, 1954a). The apparent dissociation constant in the presence of Zn²⁺, however, will be considerably lower than this, since Zn²⁺ binds only to the neutral form of the amino acid. It follows that the degree of Zn²⁺ binding and hence the formation of hexameric insulin complexes may be affected by the pH in the range of 4 to 6. The granules presently used contain Zn²⁺ in an approx. 1:1 stoichiometry with insulin (Hutton et al., 1980).

The conversion of amorphous precipitates of Zn²⁺-insulin to crystalline forms may also be facilitated in the pH range from 5 to 6. From titration data it has been deduced that optimal conditions occur close to the isoelectric point of the molecule (Tanford & Epstein, 1954b).

Regulation of the intragranular pH may be of importance in the proteolytic processing of insulin precursors by the granules, either by providing an optimal pH for activity or in terminating the process. Anglerfish islet secretory granules, for example, contain a thiol proteinase with a pH optimum between 4.5 and 5.5 capable of converting pro-insulin and proglucagon into their respective hormones (Fletcher et al., 1981).

It would seem from each of these considerations that regulation of the intragranular pH may have an important function in the formation and storage of insulin in vivo. Conversely it may be argued that the
physical properties of the hormone and processing enzymes have evolved to meet the requirements of storage in an acidic environment.

Relationship to other granule functions

The energy stored in electrochemical gradients across the granule membrane could be used to concentrate solutes in the granule interior. In the case of Ca\(^{2+}\), which is present in high concentrations in granules (Herman et al., 1973) and can be accumulated by an energy-dependent mechanism (Kohnert et al., 1979), a simple relationship to the proton-translocating system is unlikely because of the unfavourable orientation of the \(\Delta \Psi\) to inward Ca\(^{2+}\) movement. A role in the accumulation of 5-hydroxytryptamine and dopamine (3,4-dihydroxyphenethylamine) by insulin granules (Ekholm et al., 1971) analogous to that operative in the chromaffin granule of the adrenal medulla can be envisaged as discussed previously (Hutton & Peshavaria, 1982).

The chemiosmotic properties of insulin granules revealed in the present experiments were remarkably similar to those of chromaffin granules (Casey et al., 1977; Njus & Radda, 1978; Holz, 1978; Johnson et al., 1978; Njus et al., 1981), amine-storage granules of platelets (Johnson et al., 1978; Wilkins & Salganicoff, 1981) and neurohypophysial granules (Russell & Holz, 1981). This was evident with respect to the orientation and magnitude of the resting \(\Delta \rho \text{H}\) and ATP-induced changes in the \(\Delta \rho \text{H}\) and \(\Delta \Psi\) across these granule membranes. This suggested the possibility of a more general role for chemiosmotic phenomena in granule biogenesis or the exocytotic process.

These studies were supported by grants from the Medical Research Council and British Diabetic Association to Professor C. N. Hales. I received personal assistance from the N.H. and M.R.C. of Australia and British Insulin Manufacturers. Professor C. N. Hales, Dr. A. P. Dawson and Dr. J. H. Phillips are thanked for helpful discussion, Ms. M. Peshavaria for technical assistance and Mrs. Lee Creswell for preparing the manuscript.

References

Hellman, B., Sehlin, J. & Täljedal, I.-B. (1972) *Endocrinology* 90, 335–337

1982