[\(^{3}\text{H}\)Proline incorporation and hydroxyproline concentration in articular cartilage during the development of osteoarthritis caused by immobilization

A study in vivo with rabbits

Tapio VIDEeman,* Ilkka ERONEN† and Tom CANDOLin*

*Institute of Occupational Health, Helsinki, and Research Laboratory of the Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland, and †Fourth Department of Medicine, University Central Hospital, Helsinki, Finland

(Received 7 August 1981/Accepted 12 August 1981)

Proline metabolism in vivo was studied during the development of immobilization osteoarthritis in rabbits. Collagen content was measured as the hydroxyproline concentration of the tissue in question. The incorporation of \(^{3}\text{H}\)proline was used as the indicator for total protein synthesis; collagen synthesis rate was estimated from measurements of the specific radioactivity of hydroxyproline. Cartilage samples from knee and hip joints were analysed after 3, 7, 11, 18, 35 and 56 days of immobilization. The total protein and collagen synthesis rates of the immobilized legs increased and reached a maximum after 11–35 days. Although they decreased thereafter, these rates remained elevated to the end of the experiment. A slight increase in the synthetic activity of the non-immobilized contralateral legs was also detected after 7–18 days of immobilization. The isotope incorporation was markedly higher in tibial marginal tissue than in weight-bearing cartilage. In spite of the increased synthesis, no clear changes were found in the collagen content of the tissues studied during the experiment.

The collagen of articular cartilage is considered to be stable, and, until quite recently, there was no evidence of its being metabolically active. Its turnover is very slow, much lower than that of proteoglycans, the other main macromolecular component of articular cartilage (Maroudas et al., 1976). Earlier reports (Boolet et al., 1963; Mankin & Lippiello, 1970, 1971) have indicated that the total collagen content of the cartilage does not decrease in osteoarthritis as the proteoglycan content does. However, there is now evidence that collagen synthesis is increased in both human (Lippiello et al., 1977) and experimental-animal (Eyre et al., 1975, 1980; Floman et al., 1980) disease, and the synthesis rate is directly related to the severity of the disease process (Lippiello et al., 1977).

Several experimental models have been used for studying degenerative joint diseases (Gardner, 1960; Bentley, 1974). Immobilization of rabbit knee in extension produces progressive osteoarthritic changes with typical roentgenological, histological and macroscopic findings (Langenskiöld et al., 1979). The experimental disease corresponds biochemically to human osteoarthritis, i.e. increased synthesis of sulphated glycosaminoglycans in articular connective tissues and glycosaminoglycan depletion in weight-bearing cartilage are observed (Eronen et al., 1978; Videman et al., 1979).

The purpose of the present study was to determine the rates of collagen and protein synthesis in vivo, as well as the total collagen content of cartilage samples from different sampling sites, during the development of experimental osteoarthritis.

Experimental

Material

The right hind leg of 18 rabbits older than 9 months was immobilized in extension (Langenskiöld et al., 1979) for 3, 7, 11, 18, 35 and 56 days (three animals for each period). At 24h before the rabbits were killed, they were injected intramuscularly with 0.13 mCi of L-[G-\(^{3}\text{H}\)]proline/kg. (Intramuscular injection was used instead of intraarticular injection to avoid a possible disturbance in joint metabolism.) The tissue samples consisted of articular cartilage from the following sites of both hind legs: the tibial weight-bearing region, tibial margin (not pure cartilage), femoral condyle and femoral head. The samples were deep-frozen if not immediately processed.
Biochemical methods

The samples were dried and defatted in several changes of acetone and acetone/diethyl ether (1:1, v/v). Constant-weight samples were hydrolysed with 6 M-HCl for 16 h at 107°C (Stegeman & Stalder, 1967). After evaporation of the acid under vacuum, the samples were analysed for (1) collagen content, by measurement of total hydroxyproline (Stegeman & Stalder, 1967); (2) total radioactivity, by liquid-scintillation counting; and (3) specific radioactivity of hydroxyproline, by measurement with a combined assay using the procedures of Juva & Prockop (1966) and Kivirikko et al. (1967).

The assay of specific radioactivity in hydroxyproline consisted of the oxidation of hydroxyproline and primary separation of the oxidation products, mainly by the method of Kivirikko et al. (1967). With the exception of the toluene extracts, which were 4 and 3 ml, the volumes were decreased by a factor of 2.5. Chloramine-T solution (0.2 M) was prepared in distilled water just before use, and 0.5 mg of proline was added to the samples (up to 0.5 mg of hydroxyproline) for isotope dilution before oxidation. Further purification of extracted hydroxyproline oxidation products was achieved by using silicic acid columns (Bio-Sil A, 200–325 mesh; Bio-Rad Laboratories) (Juva & Prockop, 1966). The radioactivity of the eluate (10 ml) was measured by liquid-scintillation counting and quantified (a diluted sample) by Ehrlich’s reagent (Kivirikko et al., 1967).

The total radioactivity (proline incorporated as 3H d.p.m./mg of dry defatted tissue) was used as the measure of the protein-synthesis rate, and the specific radioactivity of hydroxyproline (as [3H]-hydroxyproline d.p.m./μg of hydroxyproline) as the indicator of the collagen-synthesis rate. (All analyses were done in duplicate.)

Statistical methods

Owing to the small number of subjects on each day and the obviously skewed distributions of some of the variables, non-parametric methods were applied.

The values of the measurements at each time point were estimated from medians. The statistical significance of the differences between the treated and untreated legs was evaluated with Wilcoxon’s matched-pairs signed-ranks test (Table 1 and Figs. 1–3). In the comparisons between days the Mann–Whitney U-test was used (Table 1).

Results

The results from the immobilized and non-immobilized legs and from different sampling sites are presented in Figs. 1–3, drawn with the medians of the results after each immobilization period. Significances are presented in Table 1 and the Figures.

Table 1. Medians of the differences between the immobilized and non-immobilized legs

<table>
<thead>
<tr>
<th></th>
<th>Time (days)</th>
<th>3–7</th>
<th>11–18</th>
<th>35–56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>[Hydroxyproline] (μg/mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal tissue</td>
<td>-3.78 a</td>
<td>-13.34* b</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Weight-bearing cartilage</td>
<td>1.14</td>
<td>1.16</td>
<td>-3.70</td>
<td></td>
</tr>
<tr>
<td>Femoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head cartilage</td>
<td>1.64</td>
<td>-3.78</td>
<td>-2.95</td>
<td></td>
</tr>
<tr>
<td>Condylar cartilage</td>
<td>1.28</td>
<td>-0.44</td>
<td>6.82</td>
<td></td>
</tr>
<tr>
<td>[3H]Proline incorporation (d.p.m./mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal tissue</td>
<td>561*</td>
<td>1295*</td>
<td>802*</td>
<td></td>
</tr>
<tr>
<td>Weight-bearing cartilage</td>
<td>34</td>
<td>40*</td>
<td>104*</td>
<td></td>
</tr>
<tr>
<td>Femoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head cartilage</td>
<td>80</td>
<td>32</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Condylar cartilage</td>
<td>100</td>
<td>158*</td>
<td>188*</td>
<td></td>
</tr>
<tr>
<td>Specific radioactivity of hydroxyproline (d.p.m./μg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal tissue</td>
<td>0.884</td>
<td>2.292*</td>
<td>1.312*</td>
<td></td>
</tr>
<tr>
<td>Weight-bearing cartilage</td>
<td>-0.016</td>
<td>0.040</td>
<td>0.205*</td>
<td></td>
</tr>
<tr>
<td>Femoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head cartilage</td>
<td>0.034</td>
<td>0.066</td>
<td>0.125*</td>
<td></td>
</tr>
<tr>
<td>Condylar cartilage</td>
<td>0</td>
<td>0.225*</td>
<td>0.370</td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05 (Wilcoxon’s matched-pairs signed-ranks test). P < 0.05 = b and P < 0.01 = a (Mann–Whitney U-test; differences between days).
Proline metabolism in experimental osteoarthritis

Fig. 1. Hydroxyproline concentration in immobilized and non-immobilized legs
Shown are individual values and the median curves of hydroxyproline concentrations (as µg/mg of dry defatted tissue) in tibial weight-bearing cartilage of immobilized (●) and non-immobilized (○) legs and in tibial marginal tissue of immobilized (■) and non-immobilized (□) legs (a); in femoral head cartilage of immobilized (●) and non-immobilized (○) legs and in femoral condylar cartilage of immobilized (■) and non-immobilized (□) legs (b). The hydroxyproline concentrations were determined by the method of Stegeman & Stalder (1967).

Hydroxyproline concentration

The hydroxyproline content of the tibial weight-bearing cartilage remained constant after a slight transient increase. It varied between 55 and 65 µg/mg during the experiment, and the corresponding values of the immobilized and non-immobilized knees did not differ (Fig. 1a).

In the tibial marginal tissue of the immobilized legs the hydroxyproline concentration decreased gradually, reaching a steady state in 18 days. The content in the corresponding tissue of the non-immobilized legs remained unchanged for up to 18 days and thereafter decreased to the value shown by the immobilized legs (Fig. 1a).

In femoral head and condylar cartilage the hydroxyproline concentration and its slight changes were similar in the immobilized and non-immobilized legs. The values varied from 50 to 75 µg/mg (Fig. 1b).

[3H]Proline incorporation

The incorporation of [3H]proline in the tibial weight-bearing cartilage of the immobilized knees was constant after an initial increase around day 11. From day 11 on, the amount of [3H]proline incorporation in the tibial weight-bearing cartilage of the non-immobilized knees remained below that of the immobilized knees (Fig. 2a).

In the tibial marginal tissue of the immobilized knees the [3H]proline incorporation increased rapidly, reaching a maximum around day 11, thereafter it slightly decreased. It was clearly higher than that of the corresponding tissue of the non-immobilized knees, which also showed an activation
of protein synthesis after shorter immobilization periods (Fig. 2a).

The articular cartilage of the examined femoral heads showed a \(^{3}\text{H}\)proline incorporation that was parallel in the immobilized and non-immobilized legs. In femoral condylar cartilage the \(^{3}\text{H}\)proline incorporation was clearly higher on the immobilized than on the contralateral side (Fig. 2b). The maximum \(^{3}\text{H}\)proline incorporation of the immobilized femoral cartilage occurred at day 18, whereas that of the tibial cartilage had appeared already at day 11.

Specific radioactivity of hydroxyproline

In the tibial weight-bearing cartilage the specific radioactivity of hydroxyproline had increased 4-fold by day 35 but thereafter decreased. At days 35 and 56 the specific radioactivity in corresponding tissue of the non-immobilized legs was clearly lower than that of the immobilized legs (Fig. 3a).

The specific radioactivity of hydroxyproline in the tibial marginal tissue was more than ten times higher than in the weight-bearing cartilage. The radioactivity had increased to its maximum in the
Proline metabolism in experimental osteoarthritis

Fig. 3. Hydroxyproline specific radioactivity in immobilized and non-immobilized legs
Shown are individual values and the median curves by hydroxyproline specific radioactivity (as $[^3]$H]hydroxyproline d.p.m./µg of hydroxyproline) in tibial weight-bearing cartilage of immobilized (●) and non-immobilized (○) legs and in tibial marginal tissue of immobilized (■) and non-immobilized (□) legs ($P < 0.001$) (a); in femoral head cartilage of immobilized (●) and non-immobilized (○) legs ($P < 0.01$) and in femoral condylar cartilage of immobilized (■) and non-immobilized (□) legs ($P < 0.01$) (b). For full experimental details of the assay of hydroxyproline specific radioactivity, see under 'Biochemical methods' in the text.

Vol. 200
Discussion

Our present study shows clearly that, in the model of osteoarthritis produced by immobilization, the protein- and, especially, collagen-synthesis rates increase in articular cartilage, at least during the development of the disease. We found previously, in studies based on radiosulphate incorporation in separated glycosaminoglycans (Eronen et al., 1978; Videman et al., 1981), that in the model used, glycosaminoglycan synthesis is enhanced in the beginning of the disease. When considered together, our former and present findings indicate that immobilization is not followed by alterations in glycosaminoglycan or collagen synthesis alone, but, instead, result in an overall increase in the protein synthesis as a chondrocyte response to the harmful effects of immobilization. The same kind of results have been obtained with a model in which osteoarthritis is provoked in dogs by a severing of the anterior cruciate ligament (Eyre et al., 1975, 1980) or in which osteoarthritis follows partial or complete meniscectomy in rabbits (Floman et al., 1980); such results have also been obtained in human osteoarthritis (Lippiello et al., 1977).

The collagen content of the articular cartilage remained rather unchanged during our experiment; this result could be expected on the basis of former studies of osteoarthritis (Mankin & Lippiello, 1970; Lippiello et al., 1977). The lack of material loss, as occurs for glycosaminoglycan in weight-bearing cartilage (Eronen et al., 1978), shows that reparative processes in cartilage can maintain the normal collagen content of the tissue. In tibial marginal tissue the collagen content decreased, but the decrement could have partly been caused by an increased content of other cartilage substances, e.g. glycosaminoglycan and, especially, chondroitin sulphates (Videman et al., 1981).

As in previous studies we found that after the immobilization of one knee the synthetic activity increased in the contralateral non-immobilized knee. Such bilateral changes have been found in studies concerning glycosaminoglycan metabolism (Videman et al., 1981), scanning electron microscopy (Candolin & Videman, 1980) and radiography (Videman, 1980). These bilateral effects could simply be the result of increased mechanical stress in the non-immobilized leg after the immobilization of the other leg. Another possible explanation could be the release of a factor activating connective tissue from the immobilized joint. The same kind of bilateral effect has also been seen in collagen synthesis in the meniscectomy model of osteoarthritis in rabbits (Floman et al., 1980). The nature of this possible factor and its role in the pathogenesis of osteoarthritis are entirely unknown, however.

This study was supported by grants from the Sigrid Juselius Foundation and the Finnish Ministry of Education. We wish to express our gratitude to Mrs. Sisko Asp, M.Soc.Sci., for her help in statistical analyses of the results.

References

1981