THE BIOCHEMICAL SOCIETY

OFFICERS AND COMMITTEE, 1980–81

Chairman of the Committee
S. V. Perry, F.R.S.

Committee
J. R. Bronk
E. G. Brown
R. N. Perham
C. F. Phelps

Treasurer
P. H. Clarke, F.R.S.
J. T. Dingle†

D. F. Elliott
P. F. Fottrell

Assistant Treasurer
M. I. Gurr

B. Spencer
J. L. Harwood
J. A. Lucy

General Secretary
J. R. Harrison
F. W. Hemming
D. Dingle‡

Publications Secretary
R. D. Marshall
J. Mowbray‡
I. H. M. Muir, F.R.S.

Meetings Secretary
H. F. Bradford

Executive Secretary: A. I. P. Henton (7 Warwick Court. London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]

NOTICE FOR SUBSCRIBERS

The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1980 eight volumes, each volume being made up of three issues, will be published.

Biochemical Society Transactions. This is a separate publication (see below). Volume 8 will be published in 1980, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription rates for 1980 are shown below.

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £15.00 (U.K. and Overseas) or $25.00 (N. America). The methods of despatch of both publications are shown below.

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the

Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

U.S.A.,

U.K. & Canada

Overseas & Mexico

1 year (8 volumes) $195.00
Per volume $26.00
Per part $9.00

Japan only

1 year (8 volumes) £225.00
Per volume £30.00
Per part £11.50

Airfreight to U.S.A., Canada and Mexico. The subscription rates for North America include an element for this service.

Accelerated Surface Post to Japan only. The subscription rates include a surcharge for this service.

IMPORTANT NOTICE. All subscribers, other than in North America, are asked to remit in £ sterling or U.S. $ equivalent at the rate of exchange prevailing at the date of payment.

Second-class postage paid at New York, NY, U.S.A.
Components involved in virally mediated membrane fusion and permeability changes
Survey of virally mediated permeability changes
Organic-acid transport in resealed haemoglobin-containing human erythrocyte 'ghosts'
Bile-salt inhibition of sodium ion-coupled D-glucose and L-alanine accumulation by brush-border-membrane vesicles from hamster jejunum
Asymmetric distribution of cytochrome P-450 and NADPH-cytochrome P-450 (cytochrome c) reductase in vesicles from smooth endoplasmic reticulum of rat liver
Distribution of secretory component in hepatocytes and its mode of transfer into bile

INDEXES

Author Index 855–856
Subject Index 857–863

PHOTOCOPYING

The appearance of the code at the bottom of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made in the U.S.A. for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center Inc. (P.O. Box 765, Schenectady, New York 12301, U.S.A.) for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
<table>
<thead>
<tr>
<th>INDEX OF AUTHORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abe, E.</td>
</tr>
<tr>
<td>Abdelnour, M.</td>
</tr>
<tr>
<td>Alhonen-Hongisto, L.</td>
</tr>
<tr>
<td>Amenta, J. S.</td>
</tr>
<tr>
<td>Banerjee, C. K.</td>
</tr>
<tr>
<td>Beesley, R. C.</td>
</tr>
<tr>
<td>Berg, T.</td>
</tr>
<tr>
<td>Bertaud, W. S.</td>
</tr>
<tr>
<td>Boid, R.</td>
</tr>
<tr>
<td>Bradshaw, J. J.</td>
</tr>
<tr>
<td>Brass, E. P.</td>
</tr>
<tr>
<td>Brocher, S. C.</td>
</tr>
<tr>
<td>Brooker, J. D.</td>
</tr>
<tr>
<td>Browse, J.</td>
</tr>
<tr>
<td>Cake, M. H.</td>
</tr>
<tr>
<td>Casteels, R.</td>
</tr>
<tr>
<td>Chalmers, R. A.</td>
</tr>
<tr>
<td>Cheng, C. H. K.</td>
</tr>
<tr>
<td>Clark, R. L.</td>
</tr>
<tr>
<td>Cooper, M. B.</td>
</tr>
<tr>
<td>Cousin, R. J.</td>
</tr>
<tr>
<td>Craft, J. A.</td>
</tr>
<tr>
<td>Cundiffe, E.</td>
</tr>
<tr>
<td>Curtis, D. H.</td>
</tr>
<tr>
<td>D'Agostino, A.</td>
</tr>
<tr>
<td>Davies, T. G.</td>
</tr>
<tr>
<td>Dean, R. T.</td>
</tr>
<tr>
<td>Debeer, L. J.</td>
</tr>
<tr>
<td>De Schepper, P. J.</td>
</tr>
<tr>
<td>De Schutter, G.</td>
</tr>
<tr>
<td>Dinterman, R. E.</td>
</tr>
<tr>
<td>Dobrota, M.</td>
</tr>
<tr>
<td>Duceman, B. W.</td>
</tr>
<tr>
<td>Elder, M. G.</td>
</tr>
<tr>
<td>Elliott, W. H.</td>
</tr>
<tr>
<td>Ellison, M. L.</td>
</tr>
<tr>
<td>Estall, M. R.</td>
</tr>
<tr>
<td>Faust, R. G.</td>
</tr>
<tr>
<td>Forsdyke, D. R.</td>
</tr>
<tr>
<td>Foster, K. A.</td>
</tr>
<tr>
<td>Franz, H.</td>
</tr>
<tr>
<td>Ghisalberti, A. V.</td>
</tr>
<tr>
<td>Gill, K.</td>
</tr>
<tr>
<td>Goodwin, T. W.</td>
</tr>
<tr>
<td>Ham, J.</td>
</tr>
<tr>
<td>Hansen, R. J.</td>
</tr>
<tr>
<td>Harwood, J. L.</td>
</tr>
<tr>
<td>Hinton, R. H.</td>
</tr>
<tr>
<td>Hobden, A. N.</td>
</tr>
<tr>
<td>Holland, R.</td>
</tr>
<tr>
<td>Hoppel, C. L.</td>
</tr>
<tr>
<td>Hubbard, A. R.</td>
</tr>
<tr>
<td>Hung, W.-Y.</td>
</tr>
<tr>
<td>Impraim, C. C.</td>
</tr>
<tr>
<td>Isebo, K.</td>
</tr>
<tr>
<td>Itoh, S.</td>
</tr>
<tr>
<td>Ivanetich, K. M.</td>
</tr>
<tr>
<td>Jacob, S. T.</td>
</tr>
<tr>
<td>Jessup, W.</td>
</tr>
<tr>
<td>John, J. K.</td>
</tr>
<tr>
<td>Johnson, T. C.</td>
</tr>
<tr>
<td>Jones, A. M.</td>
</tr>
<tr>
<td>Jones, R.</td>
</tr>
<tr>
<td>Kawade, N.</td>
</tr>
<tr>
<td>Kinders, R. J.</td>
</tr>
<tr>
<td>Knutton, S.</td>
</tr>
<tr>
<td>Kuhn, N. J.</td>
</tr>
<tr>
<td>Kuliszewski, M. J.</td>
</tr>
<tr>
<td>Lazo, P. A.</td>
</tr>
<tr>
<td>Legg, R. F.</td>
</tr>
<tr>
<td>Lim, L.</td>
</tr>
<tr>
<td>Lim, L.-K.</td>
</tr>
<tr>
<td>Lockley, W. J. S.</td>
</tr>
<tr>
<td>Lowry, M.</td>
</tr>
<tr>
<td>Lumsden, J.</td>
</tr>
<tr>
<td>Mannaerts, G. P.</td>
</tr>
<tr>
<td>Marr, W.</td>
</tr>
<tr>
<td>May, B. K.</td>
</tr>
<tr>
<td>McGrath, M. C.</td>
</tr>
<tr>
<td>Micklem, K. J.</td>
</tr>
<tr>
<td>Milenkovic, A. G.</td>
</tr>
<tr>
<td>Mold, D. E.</td>
</tr>
<tr>
<td>Moudgil, V. K.</td>
</tr>
<tr>
<td>Mullock, B. M.</td>
</tr>
<tr>
<td>Nicholls, D. M.</td>
</tr>
<tr>
<td>Nordin, P.</td>
</tr>
<tr>
<td>Oliver, I. T.</td>
</tr>
<tr>
<td>Onishi, S.</td>
</tr>
<tr>
<td>Onyon, L. J.</td>
</tr>
<tr>
<td>Orleans, E.</td>
</tr>
<tr>
<td>Parker, M. G.</td>
</tr>
<tr>
<td>Pasternak, C. A.</td>
</tr>
<tr>
<td>Peppard, J.</td>
</tr>
<tr>
<td>Petcu, L. G.</td>
</tr>
<tr>
<td>Plaut, G. W. E.</td>
</tr>
<tr>
<td>Rabin, B. R.</td>
</tr>
<tr>
<td>Rees, H. H.</td>
</tr>
<tr>
<td>Ross, B. D.</td>
</tr>
<tr>
<td>Saggerson, E. D.</td>
</tr>
<tr>
<td>Sani, B. P.</td>
</tr>
<tr>
<td>Scott, F. W.</td>
</tr>
<tr>
<td>Shapiro, S. G.</td>
</tr>
<tr>
<td>Shaw, B. D.</td>
</tr>
<tr>
<td>Slack, C. R.</td>
</tr>
<tr>
<td>Sols, A.</td>
</tr>
<tr>
<td>Sprandel, U.</td>
</tr>
<tr>
<td>Srivastava, G.</td>
</tr>
<tr>
<td>Steele, J. G.</td>
</tr>
<tr>
<td>Stirpe, F.</td>
</tr>
<tr>
<td>Suda, T.</td>
</tr>
<tr>
<td>Sugden, P. H.</td>
</tr>
<tr>
<td>Sugiyama, S.</td>
</tr>
<tr>
<td>Takahashi, N.</td>
</tr>
<tr>
<td>Tanabe, R.</td>
</tr>
<tr>
<td>Thomas, J.</td>
</tr>
<tr>
<td>Thrower, S.</td>
</tr>
<tr>
<td>Tolleshaug, H.</td>
</tr>
<tr>
<td>Tourian, A.</td>
</tr>
<tr>
<td>Wannemacher, R. W., Jr.</td>
</tr>
<tr>
<td>Ward, S.</td>
</tr>
<tr>
<td>White, J.O.</td>
</tr>
<tr>
<td>White, M. D.</td>
</tr>
<tr>
<td>White, R.</td>
</tr>
<tr>
<td>Wright, H.</td>
</tr>
<tr>
<td>Wuytack, F.</td>
</tr>
<tr>
<td>Wyke, A. M.</td>
</tr>
<tr>
<td>Ziman, M. R.</td>
</tr>
<tr>
<td>Ziska, P.</td>
</tr>
</tbody>
</table>
NOTICE FOR CONTRIBUTORS

The Biochemical Journal places emphasis on the prompt publication of both full-length papers (on average about 6 months after receipt) and rapid papers (on average 10–12 weeks after receipt).

For detailed instructions on the preparation of papers contributors (who need not be members of the Biochemical Society) should refer to Policy of the Journal and Instructions to Authors [Biochem. J. (1978) 169, 1–27], and the notice below.

Papers submitted for publication should be addressed to the Editorial Manager, Biochemical Journal, 7 Warwick Court, London WC1R 5DP.

Contributors should note that the Biochemical Journal makes no manuscript handling charges, no page charges and no charges for plates. Reprints are available at modest cost at about the same time as publication, and, if an author is a member of the Biochemical Society, 50 reprints are provided free of charge.

The Biochemical Journal accepts papers on all aspects of Biochemistry. Alternate issues of the journal are devoted to Molecular Aspects and Cellular Aspects. For the convenience of readers, papers within each issue are assigned to sections on the Contents pages. Authors should indicate whether their papers are Molecular or Cellular and designate the section in Contents in which they would like their paper to appear. Section headings, for both Molecular Aspects and Cellular Aspects, are reviewed from time to time; the present headings are as follows:

Molecular Aspects (Physical, Structural and Chemical Properties of Biochemical Systems, including Sequencing Information)
Peptide and Protein Structure
Enzymes and Enzyme Kinetics
Metalloproteins
Nucleotides, Nucleic Acids and Nucleoproteins
Lipids
Membranes
Carbohydrates and Complex Carbohydrates
Physical Biochemistry

Cellular Aspects (Biochemical Properties of Metabolic, Subcellular and Cellular Systems)
Protein Biosynthesis/Molecular Genetics
Protein Turnover
Metabolism, Regulation and Control Processes
Cell Surfaces and Receptors
Developmental Biochemistry
Membranes, Transport, Bioenergetics and Photosynthesis

IMPORTANT NOTICE FOR AUTHORS

Limitation of paper lengths. As a measure to meet the effects of continuously rising production costs of the Journal, the Editorial Board has decided to introduce a policy of limitation of length of published papers. In future papers should not normally exceed eight printed pages in the Journal, including Figures and Tables. (Eight pages represent approximately 5000 words without Figures or Tables; as a guide, the number of double-spaced A4 typewritten sheets for text and references, with the addition of one sheet for each Figure. Table or Scheme with its legend, should not exceed 24 if the eight printed pages maximum is to be met.) Cooperation of authors in this will be expected, and there is an advantage in that shorter papers are usually published with the least delay. Authors should also note that a single paper consisting justifiably of ten printed pages, for example, will normally be considered more favourably than two papers each of six pages dealing with the same material.

Copies of submitted papers. To expedite handling and refereeing procedures in a new system to be operated by the Journal, authors are now requested to provide three copies of papers at submission.

New features. In 1981 the inclusion of Reviews in the Journal will commence; these will usually be invited, although prospective authors of Reviews are welcome to contact the Deputy Chairman concerned with Reviews (Professor J. A. Lucy) at the Editorial Office.

'Biochemical Journal Letters' is an additional feature now being implemented for the Journal. 'BJ Letters' are intended to provide an opportunity to discuss, criticize or expand particular points made in published work, or to present a hypothesis. They must be concisely written and each will normally occupy less than one printed page of the Journal. Letters will be treated as items for rapid publication. They will be accepted only if they are thought to represent soundly reasoned opinions. Letters are not intended to provide a vehicle for discussion of more general matters which might more appropriately be sent to the Biochemical Society Bulletin. If a letter is polemical in nature, a reply may be solicited from other interested parties before its publication. Such replies will be assessed for publication with the original letter if this is appropriate. Letters should be sent to the Editorial Office.
Index of Subjects

Acetoacetate	inhibition of glucose utilization in muscle	57–64
N-Acetylglycosamine	polyisoprenoid carrier in soya bean	255–261
Acid phosphatases	constitutive synthesis in *T. vulgaris*	457–460
Adenine nucleotides	metabolism by ectoenzymes in cell culture	421–429
Adenosine	3′:5′-cyclic monophosphate	685–690
Adenosine monophosphate	activation of pyruvate dehydrogenase	705–710
Adenosine triphosphatase	(Ca²⁺ + Mg²⁺)-dependent, see (Ca²⁺ + Mg²⁺)-dependent adenosine triphosphatase	273–282
Adenosine triphosphate	activation of glucocorticoid receptor	799–808
Adenylate cyclase	cell line deficient in	439–443
Adipocytes	glycerol phosphate acyltransferase	183–189
Adipose tissue	brown, see Brown adipose tissue	95–105
Adrenalectomy	tyrosine aminotransferase	685–690
Adrenaline	effect on tyrosine aminotransferase	685–690
α-Adrenergic stimuli	effect of compound D-600 in kidney tubules	283–291
α₁-Adrenoceptor	catecholamine stimulation of gluconeogenesis	119–123
Affinity chromatography	ATP–Sepharose, see ATP–Sepharose affinity chromatography	461–464
Alanine	anti-ketogenic acid	323–332
L-Alanine	uptake by brush-border membranes	731–736
Alkaline phosphatase	phosphate transport in kidney	473–476
Alkaline phosphatases	constitutive synthesis in *T. vulgaris*	457–460
Amino acids	diabetes	395–403
	endogenous oxidation in meal-fed rats	663–671
	incorporation into membrane proteins in dystrophic hamsters	341–348
	uptake by myoblasts	647–652
γ-Aminobutyrate	release from brain slices	333–339
5-Aminolaevulinate synthase	inhibition by Mn²⁺	315–321
	mechanism of induction	519–526
Androgens	regulation of mRNA in epididymis	505–512
Arachidonate	high affinity for α-foetoprotein	301–305
Arginine	biosynthesis in *Neurospora crassa*	1–15
Ascites tumour	pyruvate dehydrogenase	705–710
Amino acids	uptake and degradation by hepatocytes	697–703
ATP–Sepharose affinity chromatography	glucocorticoid receptor	809–818
Bile	secretory component from hepatocytes	819–826
Bile pigments	synthesis in algae	445–449
Bile salts	inhibition of L-alanine uptake	731–736
	inhibition of D-glucose uptake	731–736
Bilirubin	geometric isomer in serum	533–536
	h.p.l.c. analysis of photoproducts	527–532
Brain	γ-aminobutyrate release	333–339
	5-aminolaevulinate synthase	315–321
Brain cells	virally mediated permeability change	639–646
Brown adipose tissue	lipogenesis during pregnancy and lactation	477–480
Brush-border-membrane vesicles	L-alanine accumulation	731–736
	D-glucose accumulation	731–736
Brush-border membranes	vesicles, see Brush-border-membrane vesicles	291–297
	(Ca²⁺ + Mg²⁺)-dependent adenosine triphosphatase	827–831
Cadmium	effect on peptide elongation	791–797
Calcitonin	receptors in tumours	545–550
Calcium ions
- γ-aminobutyrate release from brain slices 333–339
- effect of calmodulin on transport 827–831
- effect on muscle protein degradation 593–603
- membrane fusion 625–638
- pancreatic β-cell function 361–372
- regulation of intramitochondrial metabolism 95–105, 107–117

Calmodulin
- effect on Ca\(^{2+}\) transport 827–831

Cardiac muscle
calmodulin 827–831

Cardiomyopathy
- amino-acid incorporation into proteins 341–348

Carnitine
- relationship with CoA pools in vivo 495–504
- L-Carnitine
- octanoyl- 293–300
- *Carthamus tinctorius*, see Safflower

Cartilage
- chondrocyte microenvironment 431–438
- matrix degradation 431–438

Catecholamines
- stimulation of gluconeogenesis 119–123

Cathepsin D
- digestion of mitochondria 139–144

Cell culture
- adenosine nucleotide metabolism in endothelium 421–429
- adenosine nucleotide metabolism in smooth muscle 421–429
- Ehrlich ascites-carcinoma cells 747–754
- mastocytoma 307–313
- protein-turnover states 673–683

Cerebral cortex
- cell-surface glycopeptides 605–614
- progestin and oestrogen receptors 691–695

Chloroplasts
- linoleate desaturation in exogenous lipids 851–854

Chondroitin sulphate
- biosynthesis in Golgi apparatus 307–313

Chromaffin granule
- inhibition of ATPase 273–282
- inhibition of 5-hydroxytryptamine transport 273–282
- inhibition of proton translocation 273–282
- resealed ‘ghosts’ 273–282

Chromatography
- affinity, see Affinity chromatography
- high-pressure liquid, see High-pressure liquid chromatography

Clofibrate
- influence on oxidative phosphorylation 191–198

Coenzyme A
- relationship with acid-soluble carnitine in vivo 495–504

Collagen
- binding to glycosaminoglycans 243–254
- high-molecular-weight cross-linked component in eye 229–237

Compound D–600
- effect on gluconeogenesis in kidney tubules 283–291

Concanavalin A
- binding to hepatocytes 697–703

Cyanide
- oxidase insensitivity to 349–360

Cyanidium caldarium
- \(^{18}O\) incorporation into phycocyanobilin 445–449

Cytochrome c
- interaction with methanol dehydrogenase 481–484

Cytochrome oxidase
- cyanide-insensitive 349–360

Cytochrome P-450
- effect of fluoxetine 571–580
- effect of organotin compounds 465–468
- haem moiety 519–526
- induction mechanism of δ-aminolaevulinate synthase 519–526
- smooth-endoplasmic-reticulum vesicles 737–746

Cytoplasm
- thioltransferase in cellular regulation 125–130

Cytosol
- glucocorticoid receptors 799–808
- oestrogen receptor 17–25
- protein binding to 1α,25-dihydroxycholecalciferol 513–518
- retinoic acid 839–842
- tocopherol binding 469–471

Deoxyadenosine
- deoxyctydine incorporation by thymus cells 721–730
- thymidine incorporation by thymus cells 721–730

Deoxyctydine
- incorporation by hydroxyurea-treated thymus cells 721–730

Deoxyguanosine
- deoxyctydine incorporation by thymus cells 721–730
- thymidine incorporation by thymus cells 721–730

Dermatan sulphate
- binding to collagen 243–254

Diabetes
- amino acid content 395–403
- polyamine metabolism 395–403

Diaphragm
- muscle protein degradation 593–603
- 1α,25-Dihydroxycholecalciferol
- uterine cytosol binding protein 513–518

Diurnal responses
- amino acid oxidation in meal-fed rats 663–671

Ecdysteroids
- formation of the A/B cis ring junction 537–544
- *Polypodium vulgare* 537–544

Ectoenzymes
- metabolism of adenine nucleotides 421–429
- Ehrlich ascites-carcinoma cells
- S-adenosylmethionine decarboxylase 747–754

Endoplasmic reticulum
- smooth, see Smooth endoplasmic reticulum

Epidermis
- cell-surface-associated glycoconjugates in pig 65–77

Epiphyseal cartilage
- androgenic regulation of mRNA 505–512

Epitrochlearis muscle
- protein degradation 593–603
Index of subjects

12,13-Epoxytrichothecene antibiotics
ribosomal resistance in Myrothecium verrucaria 765–770

Erythrocyte 'ghosts'
organic-acid transport 653–658
resealed haemoglobin-containing 653–658

Erythrocytes
calmodulin 827–831
'ghosts', see Erythrocyte 'ghosts'
nucleoside transport 373–376, 377–383
perfusion of skeletal muscle 57–64

Escherichia coli
nitrate reductase complex 79–94
proton translocation 79–94
ribosome assembly in a mutant of 157–170

Escherichia coli K12
cytochrome-deficient mutant 385–393
Fe-S clusters in membrane 385–393

N-Ethylmaleimide
sensitivity of glycerol phosphate acyltransferase 183–189

Ethynylestrodiol
effect on oestrogen receptors 17–25
oestrogen receptors 563–570

Eye
assembly of rat lens capsule 229–237

F glycprotein
membrane-permeability changes 625–638
Fatty acids
desaturation by chloroplasts 851–854
high affinity for α-fetoproteins 301–305
peroxisomal oxidation of 485–494
synthesis in mammary glands 171–175

Fibroblasts
glycosaminoglycan synthesis 243–254
Huntington’s chorea 711–719
protein glycosylation 711–719
protein-turnover states 673–683

Fluoride
effect on proteoglycan structure in developing incisor 263–272
stimulation of adenyly cyclase 439–443

Fluroxene
effect on haem biosynthesis and degradation 571–580

α-Fetoprotein
high affinity for arachidonate 301–305

Fucose
turnover in plasma membranes 51–55

L-[3H]Fucose
incorporation in glycoconjugates in pig skin 65–77

Glucomycogen
effect of Compound D-600 in kidney tubules 283–291
renal cortical tubules 27–37
stimulation by catecholamines 119–123

D-[3H]Glucosamine
incorporation into glycoconjugates in pig skin 65–77

Glucose
utilization in perfused skeletal muscle 57–64

D-Glucose
uptake by brush-border membranes 731–736

Glycerol phosphate acyltransferase
N-ethylmaleimide sensitivity 183–189

Glycine max, see Soya bean

Glycolysis
renal cortical tubules 27–37

Glycopeptides
cell surface of cerebral cortex 605–614

Glycoproteins
Huntington’s chorea 711–719

Glycosaminoglycans
synthesis by human skin fibroblasts 243–254

Golgi apparatus
chondroitin sulphate biosynthesis 307–313

monosaccharide permeability in mammary gland 621–624

Grass pea (Lathyrus sativus)
sym-homospermidine synthesis 461–464

Guanine nucleotide
adenylate cyclase regulation 439–443

Haem
distribution of enzymes for synthesis of 315–321
effect of fluroxene on synthesis and degradation 571–580
induction mechanism of δ-aminolaevulinate synthetase 519–526
moiety of cytochrome P-450 519–526

Haem oxygenase
induction by organotin compounds 465–468

Haemoglobin
resealed erythrocyte 'ghosts' 653–658

Heart
Ca2+ regulation of intramitochondrial metabolism 107–117
tocopherol binding 469–471

Heparan sulphate
binding to collagen 243–254

Hepatocytes
concanavalin A binding 697–703
regulation of urea synthesis 581–592
secretory component 819–826
synthesis of soluble proteins 615–619

Hereditary myopathy
− amino-acid incorporation into proteins 341–348

High-pressure liquid chromatography
bilirubin IXα photoproducts 527–532

HN glycprotein
membrane-permeability changes 625–638

sym-Homospermidine
synthesis in L. sativus 461–464

Huntington’s chorea
fibroblasts 711–719
protein glycosylation 711–719
Index of subjects

Hyaluronic acid
binding to collagen 243–254
3-Hydroxybutane-1,2,3-tricarboxylate, see \(\alpha \)-Methylisocitrate
5-Hydroxytryptamine
inhibition of transport in chromaffin-granule ‘ghosts’ 273–282
Hydroxyurea
treatment of thymus cells 721–730
Hyperbilirubinemia
serum bilirubin IX \(\alpha \) 533–536
Hyperphenylalaninemia
cerebral ribosomal protein phosphorylation 405–419
resealed erythrocyte ‘ghosts’ 653–658
Hypothalamus
progestin and oestrogen receptors 691–695
unoccupied nuclear oestrogen receptors 833–837
Immunoglobulin A
binding to secretory component 819–826
Incisors
structure of proteoglycans during development 263–272
Insulin
diabetic rats 395–403
protein synthesis in hepatocytes 615–619
secretion from pancreatic \(\beta \)-cells 361–372
Iodothyronines
effect on conversion of thyroxine into 3,3',5-tri-iodothyronine 239–242
Ionophore A23187
effect on muscle protein degradation 593–603
Iron–sulphur clusters
membrane orientation in \(E. \) coli 385–393
Isocitrate dehydrogenase (NADP+)
regulation of urea synthesis 581–592
Jaundice
bilirubin IX \(\alpha \) photoproducts 527–532
phototherapy 533–536
Jejunum
brush-border-membrane-vesicle transport 731–736
Ketogenesis
effect of alanine 323–332
Ketone bodies
anti-ketogenic action of alanine 323–332
Kidney
catecholamine stimulation of gluconeogenesis 119–123
cortical-tubule lactate metabolism 27–37
effect of cadmium on peptide elongation 791–797
effect of compound D-600 on gluconeogenesis 283–291
phosphate transport in brush-border membrane 473–476
thyroxine conversion in tubules 239–242
Lactate
metabolism in renal cortical tubules 27–37
Lactation
lipogenesis in brown adipose tissue 477–480
monosaccharide permeability in mammary Golgi membranes 621–624
oxidation of octanoyl-l-carnitine in mitochondria 293–300
Lactuca sativa, see Lettuce
Lanthanum
insulin secretion in pancreas 361–372
Lathyrus sativus, see Grass pea
Lectins
inhibition of proteins synthesis 843–845
Lens capsule
high-molecular-weight cross-linked collagenous component 229–237
Lettuce (Lactuca sativa)
adrenaline nucleotide ratios 39–44
oxygen limitation of respiration 39–44
Linoleic acid
desaturation by chloroplasts 851–854
Linseed (Linum usitatissimum)
io bodies from seed cotyledons 551–561
Linum usitatissimum, see Linseed
Lipogenesis
brown adipose tissue 477–480
Lymphocytes
resealed plasma-membrane vesicles 45–50
Lysosomes
asialo-fetuin degradation 697–703
enzyme secretion 847–850
proteolytic enzymes 139–144
Lysozyme
murine macrophage-like cell line 847–850
Macrophages
murine cell line 847–850
Magnesium ions
effect on pyruvate dehydrogenase and oxoglutarate oxidation 107–117
Mg\(^{2+}\)-dependent phosphatidate phosphohydrolase 659–662
Mammary gland
fatty-acid synthesis 171–175
monosaccharide permeability in Golgi membranes 621–624
Manganese ions
5-aminolaevulinate synthase inhibition 315–321
Mastocytoma cells
chondroitin sulphate biosynthesis 307–313
Membranes
chondroitin sulphate biosynthesis 307–313
changes during myoblast fusion 647–652
Golgi apparatus 621–624
methane production in \(M. \) thermoaerophilicum 177–182
orientation of Fe–S clusters in 385–393
phosphate transport in kidney 473–476
virally mediated fusion 625–638
Messenger ribonucleic acid
androgenic regulation in epididymis 505–512
coding for metallothionein 755–764
combined with protein in brain polyribosomes 215–223
Metallothionein
mRNA coding for 755–764
Methane
production in \(M. \) thermoaerophilicum 177–182
Index of subjects

861

Methanobacterium thermoautotrophicum
membrane methane production 177–182

Methanol dehydrogenase
interaction with cytochrome c 481–484

Methoxyverapamil, see Compound D-600

N\(^{\gamma}\)-Methylhistidine
urine 225–228

\(\alpha\)-Methylisocitrate
inhibition of urea synthesis 581–592

Methylotrophs
interaction of methanol dehydrogenase and cytochrome c 481–484

Mistletoe (*Viscum album* L.)
lectin from 843–845

Mitochondria
Ca\(^{2+}\) regulation of metabolism in 95–105, 107–117
cyanide insensitive oxidase 349–360
oxidation of octanoyl-L-carnitine 293–300
oxidative phosphorylation 191–198
plant 349–360
proteolysis by lysosomal enzymes 139–144
proteolytic control of respiratory chain 145–156

Monosaccharides
permeability in mammary-gland Golgi membranes 621–624

Morris hepatoma
RNA polymerases 781–789

Morris hepatoma 7777
fucose-residue turnover in plasma membrane 51–55

Muscle
epitrochlearis, see Epitrochlearis muscle
skeletal, see Skeletal muscle
smooth, see Smooth muscle

Myoblasts
surface-membrane changes during fusion 647–652

Myrothecium verrucaria
ribosomal resistance to 12,13-epoxytrichothecenes 765–770

Myxovirus
virally mediated permeability changes 639–646

NADPH–cytochrome P-450 (cytochrome c) reductase,
see NADPH–cytochrome reductase

NADPH–cytochrome reductase
smooth endoplasmic reticulum 737–746

Neurospora crassa
arginine-pathway flux 1–15

Nitrate reductase
proton translocation in *E. coli* 79–94

Nitrobenzylthiounosine
binding to erythrocytes 373–376, 377–383

Noradrenaline
phosphatidate phosphohydrolase inactivation 659–662

Nucleases
attack on ribosomal peptidyltransferase centre 199–214

Nucleosides
transport in erythrocytes 373–376, 377–383

Nucleus
oestrogen receptors 17–25, 833–837
retinoic acid 839–842
transfer of tocopherol into 469–471

Octanoyl-L-carnitine
oxidation in liver mitochondria 293–300

Oestrogen
receptor, see Oestrogen receptors

Oestrogen receptors
cytosolic fraction of liver 17–25
hypothalamic nuclear 833–837
nuclear fraction of liver 17–25
effect of ethynylestradiol 563–570
effects of oestrogens and progestogens 563–570
relationship with progestin receptors 691–695

Oestrogens
effect on oestrogen receptors 563–570

Oestrous cycle
relationship between progestin receptors and oestrogen receptors 691–695

Oil bodies
in seed cotyledons of safflower and linseed 551–561

Oligo(dT)–cellulose chromatography
isolation of mRNA–protein particles in polyribosomes 215–223

Organotin compounds
effect on cytochrome P-450 465–468
haem oxygenase induction 465–468

Ornithine decarboxylase
diabetes 395–403

Oxidative phosphorylation
influence of starvation and clofibrate 191–198

Oxygen
consumption in perfused skeletal muscle 57–64

Palmitoyl-coenzyme A
oxidation by peroxisomal fractions 485–494

Pancreas
\(\beta\)-cell function 361–372
Pancreatic \(\beta\)-cells
calcium ions 361–372
insulin secretion 361–372

Paramyxovirus
virally mediated permeability changes 639–646

Peptides
effect of cadmium on elongation of 791–797
Peptidyltransferase
centre in ribosomes 199–214

Peroxisomes
palmitoyl-CoA oxidation 485–494

Phosphatases
phosphate utilization in *T. vulgaris* 457–460
thermophilic 457–460

Phosphate
transport in kidney 473–476

Phosphatidate phosphatase
inhibition by noradrenaline 659–662

Phosphatidate phosphohydrolase, see phosphatidate phosphatase

Phosphorylation
ribosomal proteins 405–419

Phosphoserine aminotransferase
activity during development 451–455

Phycobiliproteins
mechanism of formation 445–449

Phycocyanobilin
\(^{18}\)O incorporation in *C. caldarium* 445–449

Vol. 190
Index of subjects

effect of calmodulin on Ca\(^{2+}\) transport 827–831
N\(^{\text{t}}\)-methylhistidine 225–228

Sodium ions
 effect on pyruvate dehydrogenase and oxoglutarate oxidation 107–117
D-glucose and L-alanine uptake in jejunum 731–736

Soya bean (Glycine max)
 polyisoprenoid carrier of N-acetylglucosamine 255–261

Streptozotocin
 induction of diabetes 395–403

Sugars
 uptake by myoblasts 647–652

Teeth
 proteoglycan structure 263–272

Thermoactinomyces vulgaris Tsilinsky
 phosphatases 457–460

Thiol–disulphide interchange
 cellular regulation by thioltransferase 125–130

Thioltransferase
 cellular regulation by thiol–disulphide interchange 125–130

Thymidine
 incorporation by hydroxyurea-treated thymus cells 721–730

Thymus cells
 effect of hydroxyurea on DNA replication 721–730

Thyroxine
 conversion into 3,3',5-tri-iodothyronine 239–242

Tocopherol
 binding in heart cytosol 469–471

Transcription
 tyrosine aminotransferase 685–690

Transport
 nucleosides in erythrocytes 373–376, 377–383
 (2,2,2-Trifluoroethoxy)ethane, see Fluroxene
 3,3',5-Tri-iodothyronine
 conversion from thyroxine in renal tubules 239–242

Tumours
 calcitonin receptors 545–550
 RNA polymerases 781–789

Tyrosine aminotransferase
 effect of adrenaline 685–690

Urea
 regulation of synthesis by isocitrate dehydrogenase 581–592

Urine
 N\(^{\text{t}}\)-methylhistidine 225–228

Uterus
 1\(\alpha\),25-dihydroxycholecalciferol binding 513–518
 progesterin and oestrogen receptors 691–695

Viruses
 mediation of membrane fusion 625–638

Viscum album L., see Mistletoe
Volume 190 1980

EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairmen
C. I. Pogson
A. J. Kenny
J. B. Clark
A. J. Cornish-Bowden
J. A. Lucy

Editorial Manager
A. G. J. Evans

Editorial Secretary
A. S. Beedle

P. M. Bayley*
W. J. Brammar
R. C. Bray
J. W. Bridges
D. N. Brindley
H. G. Britton
K. Brocklehurst
M. J. Clemens
B. A. Cooke
D. D. Davies
R. T. Dean
R. M. Denton
F. M. Dickinson
G. J. Dutton
P. C. Engel
J. E. Fothergill
P. J. Garlick
J. L. Gordon
D. E. Griffiths
L. A. Grivell
B. A. Haddock
L. Hue
O. T. G. Jones
P. Lund
R. M. Marchbanks
G. Murphy
N. B. Myant
K. B. M. Reid
D. Robinson
D. Schultze
J. E. Scott
S. P. Spragg*
D. R. Stanworth
M. J. A. Tanner
P. Tulkens
R. T. Walker

*Nominated by the British Biophysical Society

Overseas Advisory Panel

H. Beinert (U.S.A.), H. F. DeLuca (U.S.A.), W. Fiers (Belgium), R. W. Hanson (U.S.A.),
O. Hayaishi (Japan), B. Hess (Germany), D. B. Keech (Australia), T. C. Laurent (Sweden),
L. F. Leloir (Argentina), R. Ross (U.S.A.), M. Schramm (Israel), A. Tissières (Switzerland),
D. Trentham (U.S.A.), A. D. Vinogradov (U.S.S.R.), O. Wieland (Germany)

London: The Biochemical Society © 1980