OFFICERS AND COMMITTEE, 1979–80

Chairman of the Committee
R. R. Porter, F.R.S.

Committee
J. R. Bronk
E. G. Brown

Treasurer
D. F. Elliott
P. H. Clarke, F.R.S.

J. T. Dingle*†

P. F. Fottrell

M. I. Gurr

J. L. Harwood

F. W. Hemming

J. C. Metcalfe

J. Mowbray*‡

I. H. M. Muir, F.R.S.

J. H. Ottaway

S. V. Perry, F.R.S.

J. W. Porteous, F.R.S.E.

B. E. Ryman

B. Spencer

*Ex officio Member of Committee.
†Representative of Editorial Board of the Biochemical Journal.
‡Representative of Group Secretaries.

General Secretary
J. B. Lloyd

Publications Secretary
R. M. C. Dawson

Meetings Secretary
H. F. Bradford

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].

NOTICE FOR CONTRIBUTORS

The Biochemical Journal places emphasis on the prompt publication of both full-length papers (on average about 6 months after receipt) and rapid papers (on average 10–12 weeks after receipt).

For detailed instructions on the preparation of papers contributors (who need not be members of the Biochemical Society) should refer to Policy of the Journal and Instructions to Authors [Biochem. J. (1978) 169, 1–27].

Papers submitted for publication should be addressed to the Editorial Manager, Biochemical Journal, 7 Warwick Court, London WC1R 5DP.

Contributors should note that the Biochemical Journal makes no manuscript handling charges, no page charges and no charges for plates. Reprints are available at modest cost at about the same time as publication, and, if an author is a member of the Biochemical Society, 50 reprints are provided free of charge.

Second-class postage paid at New York, NY, U.S.A.
CONTENTS

Development
Changes in bilirubins in human prenatal development

Rates of glucose production and utilization by the foetus in chronically catheterized sheep
J. C. Hodgson, D. J. Mellor & A. C. Field

Development of NADPH-producing pathways in rat heart
A. Andrés, J. Satrústegui & A. Machado

The development of white adipose tissue. Effect of litter size on the lipoprotein lipase activity of four adipose-tissue depots, serum immunoreactive insulin and tissue cellularity during the first year of life in male and female rats
A. Cryer & H. M. Jones

Factors that prevent the premature appearance of glucokinase in neonatal rat liver
M. J. O. Wakelam, M. B. Allen & D. G. Walker

Perinatal developmental changes in hepatic UDP-glucuronyltransferase

Changes in synthesis of types-I and -III collagen during matrix-induced endochondral bone differentiation in the rat
B. U. Steinmann & A. H. Reddi

Lipogenic enzymes in rat maternal adipose tissue in the perinatal period
P. A. Sinnett-Smith, R. G. Vernon & R. J. Mayer

UDP-galactose–ceramide galactosyltransferase in rat brain myelin subfractions during development
O. Kou, K.-H. Chou & F. B. Jungalwala

Metabolism in Whole Organisms
Syntheses of penicillin N, [6α-3H]penicillin N and [10-14C, 6α-3H]penicillin N
J. E. Baldwin, S. R. Herchen & P. D. Singh

Incorporation of 3H and 14C from [6α-3H]penicillin N and [10-14C,6α-3H]penicillin N into deacetoxycephalosporin C
J. E. Baldwin, P. D. Singh, M. Yoshida, Y. Sawada & A. L. Demain

INDEXES

Author Index

Subject Index

PHOTOCOPYING

The appearance of the code at the bottom of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made in the U.S.A. for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center Inc. (P.O. Box 765, Schenectady, New York 12301, U.S.A.) for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agius, L.</td>
<td>1005</td>
</tr>
<tr>
<td>Allen, M. B.</td>
<td>817</td>
</tr>
<tr>
<td>Andrés, A.</td>
<td>799</td>
</tr>
<tr>
<td>Ausiello, D. A.</td>
<td>773</td>
</tr>
<tr>
<td>Badawy, A. A.-B.</td>
<td>755, 763, 993</td>
</tr>
<tr>
<td>Baldwin, J. E.</td>
<td>881, 889</td>
</tr>
<tr>
<td>Baum, H.</td>
<td>725</td>
</tr>
<tr>
<td>Bergstrom, D. E.</td>
<td>693</td>
</tr>
<tr>
<td>Bertrand, H.</td>
<td>1009</td>
</tr>
<tr>
<td>Betteridge, A.</td>
<td>987</td>
</tr>
<tr>
<td>Bliziotis, M. M.</td>
<td>733</td>
</tr>
<tr>
<td>Blumenthal, S. G.</td>
<td>693</td>
</tr>
<tr>
<td>Boveris, A.</td>
<td>659</td>
</tr>
<tr>
<td>Branca, A. A.</td>
<td>925</td>
</tr>
<tr>
<td>Brandenburg, D.</td>
<td>945</td>
</tr>
<tr>
<td>Cadenas, E.</td>
<td>659</td>
</tr>
<tr>
<td>Castaño, J. G.</td>
<td>953</td>
</tr>
<tr>
<td>Chanarin, I.</td>
<td>933</td>
</tr>
<tr>
<td>Chance, B.</td>
<td>659</td>
</tr>
<tr>
<td>Chohan, P.</td>
<td>873</td>
</tr>
<tr>
<td>Chou, K.-H.</td>
<td>959</td>
</tr>
<tr>
<td>Coll, F. J.</td>
<td>713</td>
</tr>
<tr>
<td>Cox, R. A.</td>
<td>861</td>
</tr>
<tr>
<td>Cryer, A.</td>
<td>805, 873</td>
</tr>
<tr>
<td>Daniels, E. L.</td>
<td>733</td>
</tr>
<tr>
<td>Dayer, J.-M.</td>
<td>773</td>
</tr>
<tr>
<td>Deacon, R.</td>
<td>933</td>
</tr>
<tr>
<td>De Kretser, T. A.</td>
<td>679</td>
</tr>
<tr>
<td>Demain, A. L.</td>
<td>889</td>
</tr>
<tr>
<td>Diaconescu, C.</td>
<td>945</td>
</tr>
<tr>
<td>Dipple, I.</td>
<td>649</td>
</tr>
<tr>
<td>Doberska, C. A.</td>
<td>749</td>
</tr>
<tr>
<td>Eddleston, A. L. W. F.</td>
<td>679</td>
</tr>
<tr>
<td>Edwards, S. W.</td>
<td>669</td>
</tr>
<tr>
<td>Elliott, K. R. F.</td>
<td>649</td>
</tr>
<tr>
<td>Evans, M.</td>
<td>755</td>
</tr>
<tr>
<td>Fain, J. N.</td>
<td>781</td>
</tr>
<tr>
<td>Field, A. C.</td>
<td>739</td>
</tr>
<tr>
<td>Foster, K. A.</td>
<td>847</td>
</tr>
<tr>
<td>Friesen, H. J.</td>
<td>945</td>
</tr>
<tr>
<td>Fry, D. J.</td>
<td>687</td>
</tr>
<tr>
<td>García-Sáinz, J. A.</td>
<td>781</td>
</tr>
<tr>
<td>Goldstein, R. B.</td>
<td>841</td>
</tr>
<tr>
<td>Greenwell, P.</td>
<td>861</td>
</tr>
<tr>
<td>Griswold, M. D.</td>
<td>1001</td>
</tr>
<tr>
<td>Hall, D. H.</td>
<td>773</td>
</tr>
<tr>
<td>Halsey, M. J.</td>
<td>933</td>
</tr>
<tr>
<td>Hanson, F. W.</td>
<td>693</td>
</tr>
<tr>
<td>Harris, E. J.</td>
<td>725</td>
</tr>
<tr>
<td>Hens, R.</td>
<td>701</td>
</tr>
<tr>
<td>Herbst, E. J.</td>
<td>925</td>
</tr>
<tr>
<td>Herchen, S. R.</td>
<td>881</td>
</tr>
<tr>
<td>Hodgson, J. C.</td>
<td>739</td>
</tr>
<tr>
<td>Houslay, M. D.</td>
<td>649</td>
</tr>
<tr>
<td>Ikeda, R. M.</td>
<td>693</td>
</tr>
<tr>
<td>Impraim, C. C.</td>
<td>847</td>
</tr>
<tr>
<td>Jones, H. M.</td>
<td>805</td>
</tr>
<tr>
<td>Jungalwala, F. B.</td>
<td>959</td>
</tr>
<tr>
<td>Karl, A. F.</td>
<td>1001</td>
</tr>
<tr>
<td>Kinnon, C.</td>
<td>971</td>
</tr>
<tr>
<td>Kolb, H.</td>
<td>827</td>
</tr>
<tr>
<td>Kolb-Bachofen, V.</td>
<td>827</td>
</tr>
<tr>
<td>Koule, O.</td>
<td>959</td>
</tr>
<tr>
<td>Krebs, H. A.</td>
<td>701</td>
</tr>
<tr>
<td>Kress, B. C.</td>
<td>971</td>
</tr>
<tr>
<td>Larraga, V.</td>
<td>713</td>
</tr>
<tr>
<td>Lefebvre, Y. A.</td>
<td>641</td>
</tr>
<tr>
<td>Lewis, L.</td>
<td>971</td>
</tr>
<tr>
<td>Lewis, S. B.</td>
<td>733</td>
</tr>
<tr>
<td>Lloyd, D.</td>
<td>669</td>
</tr>
<tr>
<td>Lucas, J. J.</td>
<td>791</td>
</tr>
<tr>
<td>Lumb, M.</td>
<td>933</td>
</tr>
<tr>
<td>Luzio, J. P.</td>
<td>897</td>
</tr>
<tr>
<td>Machado, A.</td>
<td>799</td>
</tr>
<tr>
<td>Macpherson, A. J. S.</td>
<td>749</td>
</tr>
<tr>
<td>Martin, B. R.</td>
<td>749</td>
</tr>
<tr>
<td>Mayer, R. J.</td>
<td>937</td>
</tr>
<tr>
<td>McFarlane, I. G.</td>
<td>679</td>
</tr>
<tr>
<td>Mellor, D. J.</td>
<td>739</td>
</tr>
<tr>
<td>Micklem, K. J.</td>
<td>847</td>
</tr>
<tr>
<td>Miller, A. L.</td>
<td>971</td>
</tr>
<tr>
<td>Minty, B.</td>
<td>933</td>
</tr>
<tr>
<td>Mock, N.</td>
<td>841</td>
</tr>
<tr>
<td>Mollinedo, F.</td>
<td>713</td>
</tr>
<tr>
<td>Montague, W.</td>
<td>733</td>
</tr>
<tr>
<td>Morgan, C. J.</td>
<td>763, 993</td>
</tr>
<tr>
<td>Muñoz, E.</td>
<td>713</td>
</tr>
<tr>
<td>Newby, A. C.</td>
<td>907</td>
</tr>
<tr>
<td>Nicholls, D. G.</td>
<td>833</td>
</tr>
<tr>
<td>Nieto, A.</td>
<td>953</td>
</tr>
<tr>
<td>Novosad, Z.</td>
<td>641</td>
</tr>
<tr>
<td>Nunn, J. F.</td>
<td>933</td>
</tr>
<tr>
<td>Pasternak, C. A.</td>
<td>847</td>
</tr>
<tr>
<td>Peeters, C.</td>
<td>1009</td>
</tr>
<tr>
<td>Perry, J.</td>
<td>933</td>
</tr>
<tr>
<td>Pogson, C. I.</td>
<td>977</td>
</tr>
<tr>
<td>Rasmussen, R. D.</td>
<td>693</td>
</tr>
<tr>
<td>Reddi, A. H.</td>
<td>919</td>
</tr>
<tr>
<td>Reinauer, H.</td>
<td>945</td>
</tr>
<tr>
<td>Richardson, P. J.</td>
<td>897</td>
</tr>
<tr>
<td>Rolls, B. J.</td>
<td>1005</td>
</tr>
<tr>
<td>Rösen, P.</td>
<td>945</td>
</tr>
<tr>
<td>Rowe, E. A.</td>
<td>1005</td>
</tr>
<tr>
<td>Ruebner, B. H.</td>
<td>693</td>
</tr>
<tr>
<td>Satrústegui, J.</td>
<td>799</td>
</tr>
<tr>
<td>Sawada, Y.</td>
<td>889</td>
</tr>
<tr>
<td>Schlepper-Schäfer, J.</td>
<td>827</td>
</tr>
<tr>
<td>Scholz, R.</td>
<td>997</td>
</tr>
<tr>
<td>Schultz, T. A.</td>
<td>733</td>
</tr>
<tr>
<td>Schwabe, U.</td>
<td>997</td>
</tr>
<tr>
<td>Scott, I. D.</td>
<td>833</td>
</tr>
<tr>
<td>Simon, M.</td>
<td>945</td>
</tr>
<tr>
<td>Singh, P. D.</td>
<td>881, 889</td>
</tr>
<tr>
<td>Sinnett-Smith, P. A.</td>
<td>937</td>
</tr>
<tr>
<td>Smith, S. A.</td>
<td>977</td>
</tr>
<tr>
<td>Snape, B. M.</td>
<td>755</td>
</tr>
<tr>
<td>Stein, R.</td>
<td>971</td>
</tr>
<tr>
<td>Steinmann, B. U.</td>
<td>919</td>
</tr>
<tr>
<td>Stucker, T.</td>
<td>693</td>
</tr>
<tr>
<td>Taegtmeyer, H.</td>
<td>701</td>
</tr>
<tr>
<td>Tepperman, H.</td>
<td>791</td>
</tr>
<tr>
<td>Tepperman, J.</td>
<td>791</td>
</tr>
<tr>
<td>Thaler, M.</td>
<td>841</td>
</tr>
<tr>
<td>Thurman, R. G.</td>
<td>997</td>
</tr>
<tr>
<td>Vanderleyden, J.</td>
<td>1009</td>
</tr>
<tr>
<td>Verachtert, H.</td>
<td>1009</td>
</tr>
<tr>
<td>Vernon, R. G.</td>
<td>937</td>
</tr>
<tr>
<td>Veesen, D. A.</td>
<td>841</td>
</tr>
<tr>
<td>Wakelam, M. J. O.</td>
<td>817</td>
</tr>
<tr>
<td>Walker, D. G.</td>
<td>817</td>
</tr>
<tr>
<td>Williams, R.</td>
<td>679</td>
</tr>
<tr>
<td>Williamson, D. H.</td>
<td>1005</td>
</tr>
<tr>
<td>Wishart, G. J.</td>
<td>687</td>
</tr>
<tr>
<td>Yoshida, M.</td>
<td>889</td>
</tr>
<tr>
<td>Yuki, T.</td>
<td>997</td>
</tr>
</tbody>
</table>
NOTICE FOR SUBSCRIBERS

The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1980 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

Molecular Aspects

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1</td>
<td>3*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>3</td>
<td>3*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

*Completes volume, and includes Indexes.

Cellular Aspects

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1</td>
<td>3*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>3</td>
<td>3*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Vol.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting, plus such time as would be expected for transit by post.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society Book Depot, P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

details and prices are available on request from the Biochemical Society’s Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP (01-242 1076 (4 lines)). Copy is required eight weeks before publication date. Rate cards are available on request.

IMPORTANT NOTICE. All subscribers, other than in North America, are asked to remit in £ sterling or U.S. $ equivalent at the rate of exchange prevailing at the date of payment.

<table>
<thead>
<tr>
<th></th>
<th>U.K. & Overseas</th>
<th>U.S.A., Canada & Mexico</th>
<th>Japan only</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year (8 volumes)</td>
<td>£195.00</td>
<td>U.S. $465.00</td>
<td>£225.00</td>
</tr>
<tr>
<td>Per volume</td>
<td>£26.00</td>
<td>U.S. $60.00</td>
<td>£30.00</td>
</tr>
<tr>
<td>Per part</td>
<td>£9.00</td>
<td>U.S. $21.50</td>
<td>£11.00</td>
</tr>
</tbody>
</table>

Airfreight to U.S.A., Canada and Mexico. The subscription rates for North America include an element for this service.

Accelerated Surface Post to Japan only. The subscription rates include a surcharge for this service.
Index of Authors

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>591-598</td>
<td>Gregoriadis, G.</td>
</tr>
<tr>
<td>331-341</td>
<td>Griffiths, J. R.</td>
</tr>
<tr>
<td>267-278</td>
<td>Griffiths, W. T.</td>
</tr>
<tr>
<td>1001-1003</td>
<td>Griswold, M. D.</td>
</tr>
<tr>
<td>317-324</td>
<td>Guder, W. G.</td>
</tr>
<tr>
<td>169-176, 177-181</td>
<td>Haase, W.</td>
</tr>
<tr>
<td>773-780</td>
<td>Hall, D. H.</td>
</tr>
<tr>
<td>933-936</td>
<td>Halsey, M. J.</td>
</tr>
<tr>
<td>287-294</td>
<td>Hansen, J. K.</td>
</tr>
<tr>
<td>693-700</td>
<td>Hanson, F. W.</td>
</tr>
<tr>
<td>725-732</td>
<td>Harris, E. J.</td>
</tr>
<tr>
<td>701-711</td>
<td>Hems, R.</td>
</tr>
<tr>
<td>541-550</td>
<td>Henquin, J.-C.</td>
</tr>
<tr>
<td>1-4</td>
<td>Hensgens, H. E. S. J.</td>
</tr>
<tr>
<td>925-931</td>
<td>Herbst, E. J.</td>
</tr>
<tr>
<td>881-887</td>
<td>Herchen, S. R.</td>
</tr>
<tr>
<td>169-176</td>
<td>Hildman, B.</td>
</tr>
<tr>
<td>739-747</td>
<td>Hodgson, J. C.</td>
</tr>
<tr>
<td>211-216</td>
<td>Holland, P. C.</td>
</tr>
<tr>
<td>399-403</td>
<td>Hotzapple, P. G.</td>
</tr>
<tr>
<td>71-79</td>
<td>Hopgood, M. F.</td>
</tr>
<tr>
<td>649-658</td>
<td>Houslay, M. D.</td>
</tr>
<tr>
<td>453-459</td>
<td>Hunter, C. N.</td>
</tr>
<tr>
<td>693-700</td>
<td>Ikeda, R. M.</td>
</tr>
<tr>
<td>621-624</td>
<td>Ilic, V.</td>
</tr>
<tr>
<td>847-860</td>
<td>Impraim, C. C.</td>
</tr>
<tr>
<td>111-117</td>
<td>Inglese, W. J.</td>
</tr>
<tr>
<td>483-490</td>
<td>Israel, Y.</td>
</tr>
<tr>
<td>423-429</td>
<td>Janski, A. M.</td>
</tr>
<tr>
<td>525-534</td>
<td>Jeanrenaud, B.</td>
</tr>
<tr>
<td>633-636</td>
<td>Jesse, R.</td>
</tr>
<tr>
<td>5-12</td>
<td>Jimenez, S. A.</td>
</tr>
<tr>
<td>805-815</td>
<td>Jones, H. M.</td>
</tr>
<tr>
<td>453-459</td>
<td>Jones, O. T. G.</td>
</tr>
<tr>
<td>217-225</td>
<td>Jones, P. A.</td>
</tr>
<tr>
<td>959-969</td>
<td>Jungwaltala, F. B.</td>
</tr>
<tr>
<td>1001-1003</td>
<td>Karl, A. F.</td>
</tr>
<tr>
<td>183-190</td>
<td>Kawazu, S.</td>
</tr>
<tr>
<td>483-490</td>
<td>Khanna, J. M.</td>
</tr>
<tr>
<td>971-975</td>
<td>Kinnon, C.</td>
</tr>
<tr>
<td>591-598</td>
<td>Kirby, C.</td>
</tr>
<tr>
<td>377-380</td>
<td>Kitaoaka, S.</td>
</tr>
<tr>
<td>405-410</td>
<td>Knowler, J. T.</td>
</tr>
<tr>
<td>287-294</td>
<td>Knudsen, J.</td>
</tr>
<tr>
<td>827-831</td>
<td>Kolb, H.</td>
</tr>
<tr>
<td>827-831</td>
<td>Kolb-Bachofen, V.</td>
</tr>
<tr>
<td>959-969</td>
<td>Koul, O.</td>
</tr>
<tr>
<td>637-639</td>
<td>Krab, K.</td>
</tr>
<tr>
<td>701-711</td>
<td>Krebs, R. A.</td>
</tr>
<tr>
<td>971-975</td>
<td>Kress, B. C.</td>
</tr>
<tr>
<td>5-12</td>
<td>Kronick, P.</td>
</tr>
<tr>
<td>81-87</td>
<td>Kumar, A.</td>
</tr>
<tr>
<td>633-636</td>
<td>Lanni, C.</td>
</tr>
<tr>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Wolkowicz, P. E.</td>
<td>257–266</td>
</tr>
</tbody>
</table>
Index of Subjects

Acanthamoeba castellani
mitochondria of 669-678

Acetate
heart 701-711
metabolism of 701-711

Acetyl-coenzyme A decarboxylase
adipose-tissue 937-944

\(\beta \)-N-Acetyl-d-hexosaminidase
I-cell-fibroblast 971-975

Actin
fructose bisphosphate aldolase and 89-98, 99-104
skeletal-muscle 89-98, 99-104

Adena digitata seeds
protein-biosynthesis inhibitor from 439-441

Adenine
metabolism of 343-350
tobacco-leaf 343-350

Adenosine
3' : 5' -cyclic monophosphate
adrenal-gland-cortex-cell 391-397, 599-603
corticotropin and 391-397
mitochondrial maturation and 361-367
protein degradation and 71-79

Adenosine 3' : 5' -cyclic monophosphate phosphodiesterase
pancreas 491-498

Adenosine deaminase
adenosine monophosphate catabolism and 907-918
polymorphonuclear-leucocyte 907-918

Adenosine diphosphate ribose
plasma-membrane 749-754

Adenosine monophosphate
metabolism of 343-350
tobacco-leaf 343-350
mitochondrial respiration and 309-316
polymorphonuclear-leucocyte 907-918

Adenosine triphosphatase
Clostridium pasteurianum 191-199
liver 997-1000
membrane 191-199
Micrococcus lysodeikticus membrane 713-723
Na\(^+\) + K\(^+\) -activated 997-1000

Adenosine triphosphate
calcium ion transport and 833-839

Adenylate cyclase
glucagon and 649-658
pancreas 499-505
plasma-membrane 649-658, 749-754

Adipocyes
insulin and 535-540
insulin degradation by 351-360
5' -nucleotidase of 59-69
phospholipid metabolism in 781-789
plasma membrane of 897-906

Adipose tissue
acetyl-coenzyma A carboxylase of 937-944
dolichyl monophosphate mannose biosynthesis in 791-798
fatty acid synthetase of 937-944
lipoprotein lipase of 805-815
microsomal fraction of 791-798
pyruvate dehydrogenase of 937-944

Adrenal gland
cholesterol-rich lipid fractions of 145-152

Adrenal gland cortex
aminopeptidase A of 605-608
angiotensin-converting enzyme of 605-608
capillaries of 605-608

Adrenal-gland-cortex cells
adenosine 3' : 5' -cyclic monophosphate of 391-397, 599-603
steroidogenesis in 599-603

Adrenaline
mitochondrial maturation and 361-367
phospholipid metabolism and 781-789

Adrenocorticotropic, see Corticotropin

Alanine
urea cycle and 1-4

Alcohol dehydrogenase
liver 483-490

Aldolase, see Fructose bisphosphate aldolase
5-Aminolavulinate synthase 763-772, 993-996

Aminopeptidase A
adrenal-gland-cortex 605-608

Anacystis nidulans
respiratory particles of 515-523

Androgens
nuclear-envelope-fraction binding of 641-647

Angiotensin-converting enzyme
adrenal-gland-cortex 605-608

Antigen
plasma-membrane 679-685

Anti-inflammatory agents
phospholipases A\(_2\) and 633-636

Aryl acylamidase
kidney 507-513

Ascorbate
collagen biosynthesis and 217-225
elastin biosynthesis and 217-225

Ascorbate peroxidase
Euglena gracilis 377-380

Barley (Hordeum vulgare)
etioplast membranes of 267-278
Bean, snake, see Snake bean
Bean, soya, see Soya bean

Benzyloxycarbonylphenylalanyldiazomethane
protein turnover and 385-390

Bile
bilirubins of 693-700
Bile pigments
prenatal development and 693-700

Bilirubins
prenatal development and 693-700

Bitter-pear-melon (Momordica charantia) seeds
protein-biosynthesis inhibitors from 443-452

Blood plasma
thiamin-binding protein of 201-210

Blood platelets
collagen fibrils and aggregation of 5-12
INDEX OF SUBJECTS

Bone
 collagen biosynthesis in 919–924

Bone marrow
 collagen biosynthesis in 919–924

Brain
 microsomal fraction of 127–133
 mitochondria of 127–133
 myelin of 469–473, 959–969
 phospholipid biosynthesis in 127–133
 protein kinase of 469–473
 uridine diphosphate galactose–ceramide galactosyltransferase of 959–969

Brain cortex
 mitochondria of 833–839
 progestin-receptor protein of 295–300
 synaptosomes of 21–33

Brush-border-membrane vesicles
 small-intestinal 169–176
 sodium ion/lactate co-transport in 169–176

Butyrate
 mammary-gland 287–294

Calcitonin
 protein kinase and 773–780

Calciump
 corticotropin-induced adenosine 3′:5′-cyclic monophosphate and 391–397
 islets of Langerhans 135–144
 mitochondrial 257–266, 725–732, 833–839
 phospholipid metabolism and 781–789
 prostaglandin E biosynthesis and 987–992
 protein kinase and 469–473
 skeletal-muscle 461–467
 transport of 135–144, 257–266, 461–467, 833–839

Capillaries
 adrenal-gland-cortex 605–608

Cardiocytes
 lipoprotein lipase of 873–879

Cartilage
 collagen biosynthesis in 919–924

Cells, HeLa
 see HeLa cells

Cells, Lettré, see Lettré cells

Cells, Sertoli, see Sertoli cells

Cellular adhesion
 fibronectin and 551–559

Central nervous system
 myelin protein kinase of 469–473

Cephalosporins
 metabolism of 613–616
 Streptomyces clavuligerus 613–616

Cephalosporium acremonium
 deacetoxycephalosporin C biosynthesis in 889–895

Cerebral cortex
 mitochondria of 833–839
 progestin-receptor protein of 295–300
 synaptosomes of 21–33

Chick
 thiamin-binding-protein biosynthesis in 201–210

Chicken
 kidney aryl acylmidase of 507–513

Cholesterol
 lipid fractions rich in 145–152
 liposomal 591–598
 side-chain cleavage
 mitochondrial 145–152
 Chondroitin 4-sulphate
 degradation of 279–286
 liver 279–286
 Clearing-factor lipase, see Lipoprotein lipase
 Clostridium pasteurianum
 adenosine triphosphate of 191–199
 membrane of 191–199

Collagen
 biosynthesis of 217–225, 919–924
 bone 919–924
 bone-marrow 919–924
 cartilage 919–924
 fibronectin interaction with 551–559
 smooth-muscle 217–225

Collagen fibrils
 platelet aggregation and 5–12

Complement
 plasma-membrane-vesicle production and 897–906

Copper
 metabolism of 629–631
 placental 629–631

Corticotropin
 adenosine 3′:5′-cyclic monophosphate and 599–603
 steroidogenesis and 599–603

Corticotropin analogues
 adenosine 3′:5′-cyclic monophosphate and 599–603
 steroidogenesis and 599–603

Cyclic adenosine 3′:5′-monophosphate, see Adenosine 3′:5′-cyclic monophosphate

Cyclophospholins
 metabolism of 613–616
 Streptomyces clavuligerus 613–616

Cyclic nucleotides
 metabolism of 491–498
 pancreas 491–498, 499–505
 prostaglandin E biosynthesis and 987–992

Cytochrome b+50
 membrane 453–459
 Rhodospirillum rubrum 453–459

Cytochromes
 Acanthamoeba castellanis 669–678

Diamines
 ornithine decarboxylase and 925–931

Diet
 dolichyl monophosphate mannose biosynthesis and 791–798
 fatty acid β-oxidation and 369–371
 lipogenesis and 1005–1008
 phosphofructokinase and 953–957

Dihydrotestosterone
 nuclear-envelope-fraction binding of 641–647

1980
<table>
<thead>
<tr>
<th>Subjects</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolichyl monophosphate mannose biosynthesis in adipose-tissue</td>
<td>791–798</td>
</tr>
<tr>
<td>Dolichyl phosphate glucosylation</td>
<td>411–421</td>
</tr>
<tr>
<td>Elastin biosynthesis of smooth-muscle</td>
<td>217–225</td>
</tr>
<tr>
<td>Electron transport</td>
<td>515–523</td>
</tr>
<tr>
<td>Enzymes</td>
<td>13–19</td>
</tr>
<tr>
<td>Enzymes glycolytic, see Glycolytic enzymes lysosomal, see Lysosomal enzymes</td>
<td></td>
</tr>
<tr>
<td>Epididymal fat-pads</td>
<td>13–19</td>
</tr>
<tr>
<td>Epididymal fat-pads dolichyl monophosphate mannose biosynthesis in adipose-tissue</td>
<td>791–798</td>
</tr>
<tr>
<td>Epinephrine, see Adrenaline 5,6-Epoxyretinoic acid retinoic acid metabolite</td>
<td>475–481</td>
</tr>
<tr>
<td>Erwinia carotovora lipid biosynthesis</td>
<td>13–19</td>
</tr>
<tr>
<td>Ethanol</td>
<td>13–19</td>
</tr>
<tr>
<td>Ethanolamine bacterial metabolism of</td>
<td>13–19</td>
</tr>
<tr>
<td>Etioplast membrane protochlorophyllide reductase of</td>
<td>267–278</td>
</tr>
<tr>
<td>Euglena gracilis ascorbate peroxidase of</td>
<td>377–380</td>
</tr>
<tr>
<td>Hydrogen peroxide metabolism in</td>
<td>377–380</td>
</tr>
<tr>
<td>Euonymus europaeus seeds protein-biosynthesis inhibitor from</td>
<td>439–441</td>
</tr>
<tr>
<td>Fat-cells insulin and</td>
<td>535–540</td>
</tr>
<tr>
<td>Insulin degradation by</td>
<td>351–360</td>
</tr>
<tr>
<td>5′-nucleotidase of</td>
<td>59–69</td>
</tr>
<tr>
<td>Phospholipid metabolism in</td>
<td>781–789</td>
</tr>
<tr>
<td>Plasma membrane of</td>
<td>897–906</td>
</tr>
<tr>
<td>Fat-pads, epididymal, see Epididymal fat-pads Fatty acid synthetase adipose-tissue</td>
<td>937–944</td>
</tr>
<tr>
<td>Mammary-gland</td>
<td>287–294</td>
</tr>
<tr>
<td>Fatty acids biosynthesis of</td>
<td>287–294, 937–944</td>
</tr>
<tr>
<td>Mammary-gland</td>
<td>287–294</td>
</tr>
<tr>
<td>β-Oxidation of</td>
<td>369–371</td>
</tr>
<tr>
<td>Fibroblasts, I-cell, see I-cell fibroblasts Fibroblasts, skin, see Skin fibroblasts Fibronectin cellular adhesion and</td>
<td>551–559</td>
</tr>
<tr>
<td>Collagen interaction with</td>
<td>551–559</td>
</tr>
</tbody>
</table>

Vol. 186

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folic acid liver</td>
<td>235–242, 933–936</td>
</tr>
<tr>
<td>Vitamin B12 and</td>
<td>933–936</td>
</tr>
<tr>
<td>10-Formylpteroyl[5'0'-pentaglutamate liver</td>
<td>235–242</td>
</tr>
<tr>
<td>10-Formylpteroyl[5'0'-tetraglutamate liver</td>
<td>235–242</td>
</tr>
<tr>
<td>Fructose bisphosphate aldolase</td>
<td>89–98, 99–104</td>
</tr>
<tr>
<td>α-L-Fucosidase I-cell-fibroblast</td>
<td>971–975</td>
</tr>
</tbody>
</table>

Gastrointestinal tract protein biosynthesis in | 381–383 |

Glucagon ketogenesis and | 621–624 |

Mitochondrial maturation and | 361–367 |

Oleate metabolism and | 621–624 |

Phosphofructokinase and | 953–957 |

Protein degradation and | 71–79 |

Glucagon-receptor protein plasma-membrane | 649–658 |

Glucokinase liver | 817–826 |

Neonatal development and | 817–826 |

Gluconeogenesis foetal | 739–747 |

Glucose blood | 161–168 |

Heart | 701–711 |

Islets of Langerhans | 183–190 |

Mammary-gland | 301–308, 1005–1008 |

Skeletal-muscle | 525–534, 733–738 |

Glucose 6-phosphate dehydrogenase cytosol | 571–579, 581–590 |

Plasma-membrane protein and | 571–579, 581–590 |

Glycine max, see Soya bean Glycolysis ethanol metabolism and | 119–126 |

Glycolytic enzymes | 105–109 |

Glycolytic intermediates skeletal-muscle | 331–341 |

Glycogen skeletal-muscle | 331–341 |

Glycogen phosphorylase kinase skeletal-muscle | 331–341 |

Guanine metabolism of | 343–350 |

Tobacco-leaf | 343–350 |

Guanosine 3′: 5′-cyclic monophosphate phosphodiesterase pancreas | 491–498 |

Guanosine 5′-[(β-imidod)triphosphate adenylate cyclase and | 649–658 |

Guanosine triphosphate adenylate cyclase and | 649–658 |

Guanylate cyclase pancreas | 499–505 |
INDEX OF SUBJECTS

Haem
liver 763–772, 993–996
metabolism of 763–772, 993–996

Haemoproteins
Acanthamoeba castellanis 669–678
carbon monoxide-reacting 669–678
mitochondrial 669–678

Heart
acetate metabolism in 701–711
glucose metabolism in 701–711
ketone-body metabolism in 701–711
lactate metabolism in 701–711
nicotinamide–adenine dinucleotide phosphate (reduced) production in 799–803
oleate metabolism in 701–711
very-low-density-lipoprotein metabolism in 431–438
Heart cells
very-low-density-lipoprotein metabolism in 431–438
Heart-muscle cells
lipoprotein lipase of 873–879
HeLa cells
ornithine decarboxylase of 925–931
Hen, see Chicken
Hepatitis
plasma-membrane antigen and 679–685
Hepatocytes
ketogenesis in 621–644
5'-nucleotidase of 59–69
oleate metabolism in 621–644
polyribosomes of 35–45
protein biosynthesis in 35–45
protein degradation in 71–79
subcellular distribution of enzymes of 423–429
tryptophan metabolism in 977–986
urea cycle in 1–4
2-n-Heptyl-4-hydroxyquinoline N-oxide proton transport and 637–639
Hexanoate
mammary-gland 287–294
Hordeum vulgare, see Barley
Hydrogen ions
mitochondrial-membrane 637–639
transport of 637–639
Hydrogen peroxide
Euglena gracilis 377–380
metabolism of 377–380
15-Hydroxy prostaglandin dehydrogenase skin 153–160
Hypothalamus
progestin-receptor protein of 295–300
Hypoxanthine
metabolism of 343–350
tobacco-leaf 343–350
I-cell fibroblasts
β-N-acetyl-d-hexosaminidase of 971–975
α-L-fucosidase of 971–975
Insulin
adipocytes and 351–360, 535–540
degradation of 351–360
glucose metabolism and 525–534, 733–738, 1005–1008
islets of Langerhans 135–144, 183–190
phospholipid metabolism and 781–789
plasma-membrane binding of 945–952
protein degradation and 71–79
release of 135–144, 183–190
Sertoli cells and 1001–1003
skeletal muscle and 525–534, 733–738
Intestine, small, see Small intestine
Iron–sulphur centres
mitochondrial 111–117
Islets of Langerhans
calcium ion uptake by 135–144
glucose metabolism in 183–190
insulin release by 135–144, 183–190
2-oxo acids and 135–144
potassium ion permeability of 541–550
Ketogenesis
hepatocyte 621–624
Ketone bodies
heart 701–711
metabolism of 701–711
Kidney
aryl acylamidase of 507–513
Kidney cells
protein kinase of 773–780
Kidney cortex
triacylglycerol metabolism in 317–324
Kupffer cells
erthrocyte recognition by 827–831
Lactate
coz-transport of sodium ions and 169–176
heart 701–711
liver 47–57
metabolism of 47–57
splanchnic-bed 47–57
Lactation
lactate metabolism and 47–57
lipogenesis and 937–944
mammary-gland fatty acid biosynthesis during 287–294
mammary-gland glucose metabolism during 301–308
propionate metabolism and 47–57
pyruvate metabolism and 47–57
Leaves
purine metabolism in 343–350
tobacco 343–350
Lecithin, see Phosphatidylcholine
Lectin
bitter-pear-melon 443–452
Lettrée cells
plasma membrane of 847–860
Leucocytes
polymorphonuclear, see Polymorphonuclear leucocytes
Lipid fractions
adrenal-gland 145–152
cholesterol-rich 145–152
Lipids
bacterial 13–19
biosynthesis of 13–19
INDEX OF SUBJECTS

Lipogenesis
- adipose-tissue 937-944
- mammary-gland 1005-1008

Lipoprotein lipase
- adipose-tissue 805-815
- cardiocyte 873-879

Lipoproteins
- low-density, see Low-density lipoproteins
- very-low-density, see Very-low-density lipoproteins

Liposomes
- cholesterol of 591-598

Liver
- alcohol dehydrogenase of 483-490
- 5-aminolaevulinate synthase of 763-772, 993-996
- chondroitin 4-sulphate degradation in 279-286
- ethanol metabolism in 119-126, 483-490, 997-1000
- fvotes of 235-242, 933-936
- glucokinase of 817-826
- haem metabolism in 763-772, 993-996
- lactate metabolism in 47-57
- lysosomes of 243-246
- microsomal fraction of 127-133, 687-691
- mitochondria of 127-133, 361-367, 637-639
- Na+ & K+-activated adenosine triphosphatase of 997-1000
- nuclear-envelope fraction of 687-691
- nuclei of 687-691
- peroxisomes of 369-371
- phosphofructokinase of 953-957
- phospholipid biosynthesis in 127-133
- propionate metabolism in 47-57
- protein biosynthesis in 381-383
- pyruvate metabolism in 47-57
- ribonucleic acid biosynthesis in 81-87
- tryptophan pyrrolase of 763-772, 993-996
- tyrosine aminotransferase of 609-612, 625-627, 755-761
- uridine diphosphate glucuronosyltransferase of 617-619, 687-691, 841-845
- vitamin B12 of 933-936

Liver cells
- ketogenesis in 621-624
- 5'-nucleotidase of 59-69
- oleate metabolism in 621-624
- polyribosomes of 35-45
- protein biosynthesis in 35-45
- protein degradation in 71-79
- subcellular distribution of enzymes of 423-429
- tryptophan metabolism in 977-986
- urea cycle in 1-4

Low-density lipoproteins
- metabolism of 373-375
- skin-fibroblast 373-375

Lyso phosphatidylcholine acyltransferase
- small-intestinal 399-403

Lyosomal enzymes
- latency of 243-246
- liver 243-246

Lyosomal membrane
- liver 243-246

Lyosomes
- liver 243-246

macrophage 385-390
protein turnover in 385-390

Macrophages
- protein turnover in 385-390

Malate dehydrogenase
- mitochondrial 227-233
- phospholipid membrane interaction with 227-233

Mammary gland
- fatty acid biosynthesis in 287-294
- fatty acid synthetase of 287-294
- glucose metabolism in 301-308, 1005-1008
- lipogenesis in 1005-1008
- nuclear ribonucleic acid of 561-570

Membrane
- adenosine triphosphatase of 191-199, 713-723
- brush-border, see Brush-border membrane
cytochrome b50 of 453-459

Clostridium pasteurianum
191-199
etioplast, see Etioplast membrane
lysosomal, see Lysosomal membrane

Micrococcus lysodeikticus 713-723
- mitochondrial, see Mitochondrial membrane
phospholipid, see Phospholipid membrane plasma, see Plasma membrane
Rhodospirillum rubrum 453-459

Mesophyll protoplasts
- purine metabolism in 343-350
- tobacco 343-350

7a-Methoxycephalosporins
- biosynthesis of 613-616

Streptomyces clavuligerus 613-616

3-Methylcholanthrene
- ribonucleic acid biosynthesis and 81-87

Micrococcus lysodeikticus
- adenosine triphosphatase of 713-723
- membrane of 713-723

Microsomal fraction
- adipose-tissue 791-798
- brain 127-133
dolichyl monophosphate mannose biosynthesis in 791-798
- liver 127-133, 687-691
- phospholipid biosynthesis in 127-133
- uridine diphosphate glucuronosyltransferase of 687-691

Milk
- production of 301-308

Milk protein
- biosynthesis of 561-570

Mitochondria
Acanthamoeba castellanii 669-678
- adrenal-gland 145-152
- brain 127-133
calcium ion transport by 257-266, 833-839
calcium ions of 725-732
cerebral-cortex 833-839
cholesterol side-chain cleavage in 145-152
deoxyribonucleic acid biosynthesis in 325-329
haemoproteins of 669-678
- heart 111-117, 257-266, 659-667, 725-732
- hepatocyte 423-429
iron-sulphur centres in 111-117
- liver 127-133, 361-367

Vol. 186
INDEX OF SUBJECTS

Mitochondria—cont.
 malate dehydrogenase of 227–233
 maturation of 361–367
 Monilliella tomentosa 309–316
 phospholipid biosynthesis in 127–133
 respiration in 309–316
 snake-bean 325–329
 thiol-group production in 725–732

Mitochondrial membrane
 liver 637–639
 proton transport by 637–639
 synaptosomal 21–33

Momordica charantia, see Bitter pear melon

Moniliella tomentosa
 mitochondria of 309–316

Muscle
 heart, see Heart muscle
 skeletal, see Skeletal muscle
 smooth, see Smooth muscle

Myelin
 brain 959–969
 protein kinase of 469–473
 uridine diphosphate galactose–ceramide galatosyl-transferase of 959–969

Nerve, sciatic, see Sciatic nerve

Nervous system, central, see Central nervous system

Neurospora crassa
 submitochondrial particles of 1009–1011
 succinate–ubiquinone oxidoreductase of 1009–1011

Nicotiana tabacum, see Tobacco

Nicotinamide–adenine dinucleotide phosphate
 heart 799–803
 production of 799–803

Nicotinamide nucleotides (reduced)
 calcium ion transport and 257–266

Nitrofurantoin
 deoxyribonucleic acid biosynthesis and 325–329

Nitrous oxide
 vitamin B₃ and 933–936

Nuclear-envelope fraction
 androgen binding to 641–647
 liver 687–691
 prostate-gland 641–647
 uridine diphosphate glucuronosyltransferase of 687–691

Nuclear ribonucleic acid
 protein biosynthesis and 561–570

Nuclei
 liver 687–691
 uridine diphosphate glucuronosyltransferase of 687–691

5′-Nucleotidase
 adenosine monophosphate catabolism and 907–918
 adipocyte 59–69
 hepatocyte 59–69
 lymphocyte 59–69
 plasma-membrane 59–69
 polymorphonuclear-leucocyte 907–918

Nucleotides
 skeletal-muscle 331–341

Oestradiol-17β
 ethanol metabolism and 483–490
 polyribosome formation and 405–410
 thiamin-binding-protein biosynthesis and 201–210
 uterus and 405–410

Oestrogens
 thiamin-binding-protein biosynthesis and 201–210

Oleate
 heart 701–711
 hepatocyte 621–624
 metabolism of 621–624, 701–711
 triacylglycerol biosynthesis from 317–324

Ornithine decarboxylase
 HeLa-cell 925–931

2-Oxo acids
 islets of Langerhans and 135–144

Oxygen
 ethanol metabolism and 119–126

Palmitate
 triacylglycerol biosynthesis from 317–324

Palmitoylcarnitine
 calcium ion transport and 257–266

Palmitoyl-coenzyme A
 calcium ion transport and 257–266

Pancreas
 adenosine 3′:5′-cyclic monophosphate phosphodiesterase of 491–498
 adenylate cyclase of 499–505
 cyclic nucleotide metabolism in 491–498, 499–505
 guanosine 3′:5′-cyclic monophosphate phosphodiesterase of 491–498
 guanylate cyclase of 499–505
 islets of Langerhans of 135–144, 183–190, 541–550

Penicillin N
 synthesis of 881–887
 deacetoxycephalosporin C biosynthesis from 889–895

Pentose phosphate pathway
 mammary-gland 301–308

Peroxisomes
 fatty acid β-oxidation in 369–371
 liver 369–371
 ribonucleic acid biosynthesis and 81–87

Phosphatase
 adenosine monophosphate catabolism and 907–918
 polymorphonuclear-leucocyte 907–918

Phosphatidylcholine
 biosynthesis of 127–133, 399–403
 brain 127–133
 liver 127–133
 microsomal 127–133
 mitochondrial 127–133
 small-intestinal 399–403

Phosphatidylinositol
 adipocyte 781–789
 metabolism of 781–789

Phosphofructokinase
 diet and 953–957
 glucagon and 953–957
 liver 953–957

Phospholipase C
 insulin receptors and 535–540

Phospholipases A₂
 anti-inflammatory agents and 633–636
 calcium ions and 633–636

1980
INDEX OF SUBJECTS

Phospholipid membrane
malate dehydrogenase interaction with 227–233

Phospholipids
adipocyte 781–789
biosynthesis of 127–133
brain 127–133
liver 127–133
metabolism of 781–789
microsomal 127–133
mitochondrial 127–133

Phosphorylase, see Glycogen phosphorylase

Phylloquinone
Anacystis nidulans 515–523

Pituitary gland (anterior)
prostaglandin biosynthesis in 987–992

Plasma
platelet aggregation in 5–12
thiamin-binding protein of 201–210

Plasma membrane
adenosine diphosphate ribose of 749–754
adenylate cyclase of 649–658, 749–754
adipocyte 59–69, 897–906
glucagon-receptor protein of 649–658
glucosyltransferases of 411–421
hepatocyte 59–69
lettrée-cell 847–860
lymphocyte 59–69
5'-nucleotidase of 59–69
permeability of 847–860
protein of 571–579, 581–590
proteins of 211–216
skeletal-muscle 211–216
small-intestinal 177–181
soya-bean-protoplast 411–421
synaptosomal 21–33
vesicle production from 897–906

Plasma-membrane antigen
hepatitis and 679–685
liver 679–685

Platelets
collagen fibrils and aggregation of 5–12

Polyamines
ornithine decarboxylase and 925–931

Polyspecrenyl phosphate
glucosylation of 411–421

Polymorphonuclear leucocytes
adenosine deaminase of 907–918
adenosine monophosphate catabolism in 907–918
5'-nucleotidase of 907–918
phosphatase of 907–918

Polyribosomes
formation of 405–410
hepatocytes 35–45
protein biosynthesis and 35–45
uterus 405–410

Polysomes, see Polyribosomes

Potassium ions
islets of Langerhans 541–550

Pregnancy
lipogenesis and 937–944

Progestosterone
progestin-acceptor protein binding of 295–300

Progestin-receptor protein
hypothalamus 295–300
progesterone binding to 295–300

Propionate
liver 47–57
metabolism of 47–57
splanchnic-bed 47–57

Prostaglandin E
anterior-pituitary-gland 987–992
biosynthesis of 987–992

Prostaglandins
catabolism of 153–160
skin 153–160

Prostate gland
nuclear-envelope fraction of 641–647

Protein
biosynthesis of 35–45, 381–383, 439–441, 443–452, 561–570, 861–872
degradation of 71–79
gastrointestinal-tract 381–383
glucagon-receptor, see Glucagon-receptor protein
hepatocyte 35–45, 71–79
liver 381–383
macrophage 385–390
milk, see Milk protein
plasma-membrane 571–579, 581–590
progestin-receptor, see Progestin-receptor protein
ribosomal, see Ribosomal protein
thiamin-binding, see Thiamin-binding protein
turnover of 385–390

Protein kinase
brain 469–473
central-nervous-system 469–473
cyclic AMP-dependent 773–780
kidney-cell 773–780
myelin 469–473
sciatic-nerve 469–473

Proteins
plasma-membrane 211–216
ribosomal, see Ribosomal proteins

Protoporphyrin reductase
etioplast-membrane 267–278

Protons
mitochondrial-membrane 637–639
transport of 637–639

Protoplasts
glucosyltransferases of 411–421
plasma-membrane 411–421
purine metabolism in 343–350
soya-bean 411–421
tobacco-leaf 343–350

Purines
metabolism of 343–350
tobacco-leaf 343–350

Putrescine
ornithine decarboxylase and 925–931

Pyridoxine
tyrosine aminotransferase and 625–627

Pyruvate
liver 47–57
metabolism of 47–57
splanchnic-bed 47–57

Vol. 186
INDEX OF SUBJECTS

Pyruvate dehydrogenase
 adipose-tissue 937–944

Red blood cells, see Erythrocytes
Respiratory particles
Anacystis nidulans 515–523
electron transport in 515–523
Reticulum, sarcoplasmic, see Sarcoplasmic reticulum
Retinoic acid
metabolism of 475–481
Retinol
Sertoli cells and 1001–1003
Rhodospirillum rubrum
cytochrome b₅₆₅ of 453–459
membrane of 453–459
Ribonucleic acid
biosynthesis of 81–87
liver 81–87
nuclear, see Nuclear ribonucleic acid
ribosomal, see Ribosomal ribonucleic acid
Ribosomal core-particles
ribosome formation from ribosomal proteins and 861–872
Ribosomal protein
uterus 405–410
Ribosomal proteins
ribosome formation from ribosomal core-particles and 861–872
Ribosomal ribonucleic acid
uterus 405–410
Ribosomes
formation of hybrid forms of 861–872
protein biosynthesis by 861–872
Sarcoplasmic reticulum
calcium ion transport in 461–467
Sciatic nerve
myelin protein kinase of 469–473
Seed extracts
protein-biosynthesis inhibition by 439–441
Seeds
deoxyribonucleic acid biosynthesis in 325–329
snake-bean 325–329
Sendai virus
membrane permeability and 847–860
Sertoli cells
insulin and 1001–1003
Skeletal muscle
calcium ion transport in 461–467
electrical stimulation of 105–109
fructose bisphosphatase and actin of 89–98, 99–104
fructose metabolism in 525–534, 733–738
glycolytic enzymes of 105–109
insulin and 525–534, 733–738
sarcoplasmic reticulum of 461–467
tetanic stimulation and metabolite concentrations in 331–341
Skeletal-muscle cells
plasma membrane of 211–216
Skin
prostaglandin catabolism in 153–160
Skin fibroblasts
low-density-lipoprotein metabolism in 373–375
Small intestine
brush-border-membrane vesicles of 169–176
phosphatidylcholine biosynthesis in 399–403
plasma membrane of 177–181
retinoic acid metabolism in 475–481
Smooth-muscle cells
collagen biosynthesis in 217–225
elastin biosynthesis in 217–225
Snake-bean (Vigna sinensis) seeds
deoxyribonucleic acid biosynthesis in 325–329
mitochondria of 325–329
Sodium ions
co-transport of lactate and 169–176
Soya-bean (Glycine max) callus
glycosyltransferases of 411–421
protoplast plasma membrane of 411–421
Spermidine
ornithine decarboxylase and 925–931
Spermine
ornithine decarboxylase and 925–931
Splanchnic bed
lactate metabolism in 47–57
propionate metabolism in 47–57
pyruvate metabolism in 47–57
Sporulation
Clostridium pasteurianum 191–199
Steroidogenesis
adrenal-gland-cortex-cell 391–397, 599–603
corticotropin and 391–397
Sterols
glucoisylation of 411–421
Streptomyces clavuligerus
cephalosporin metabolism in 613–616
Submitochondrial particles
chemiluminescence of 659–667
heart 111–117, 659–667
iron–sulphur centres in 111–117
Monilirlla tomentosa 309–316
Neurospora crassa 1009–1011
respiration in 309–316
succinate–ubiquinone oxidoreductase of 1009–1011
Succinate–ubiquinone oxidoreductase
mitochondrial 1009–1011
Neurospora crassa 1009–1011
Supernatant fraction, see Cytosol
Synaptosomes
cerebral-cortex 21–33
mitochondria of 21–33
plasma membrane of 21–33
Testosterone
ethanol metabolism and 483–490
nuclear-envelope-fraction binding of 641–647
Thiamin–binding protein
biosynthesis of 201–210
plasma 201–210
Thiol groups
mitochondrial 725–732
Thyroxine
phospholipid biosynthesis and 127–133
Tobacco (Nicotiana tabacum) leaves
protoplasts of 343–350
purine metabolism in 343–350
INDEX OF SUBJECTS

Triacylglycerol
 kidney-cortex 317–324

Triglyceride, see Triacylglycerol

Trypsin
 insulin receptors and 535–540

Tryptophan
 hepatocyte 977–986
 metabolism of 977–986

Tryptophan 2,3-dioxygenase
 hepatocyte 977–986

Tryptophan pyrrolase
 liver 763–772, 993–996

Tunicamycin
 low-density-lipoprotein metabolism and 373–375

Tyrosine aminotransferase
 ethanol and 755–761
 liver 609–612, 625–627, 755–761

Urea cycle
 alanine and 1–4
 hepatocyte 1–4

Uridine diphosphate galactose–ceramide galactosyltransferase
 brain 959–969
 myelin 959–969
 postnatal development and 959–969

Uridine diphosphate glucuronosyltransferase
 liver 617–619, 687–691, 841–845
 microsomal 687–691
 nuclear 687–691
 nuclear-envelope 687–691
 perinatal development and 617–619, 841–845

Uterus
 oestradiol-17β and 405–410
 polyribosome formation in 405–410
 progestin-receptor protein of 295–300

Vasopressin
 ketogenesis and 621–624
 oleate metabolism and 621–624
 protein kinase and 773–780

Very-low-density lipoproteins
 heart 431–438
 metabolism of 431–438

Vigna sinensis, see Snake bean

Virus, Sendai, see Sendai virus

Vitamin B-6, see Pyridoxine

Vitamin B₁₂
 folate metabolism and 933–936
 liver 933–936
 nitrous oxide and 933–936

Vitamin C, see Ascorbate