Effects of Modification of the Tyrosine Residues of Bacteriorhodopsin with Tetranitromethane

By MARIA CAMPOS-CAVIERES,* TERRY A. MOORE and RICHARD N. PERHAM
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
(Received 23 October 1978)

Treatment of the purple membrane of Halobacterium halobium with tetranitromethane led to modification of tyrosine residues. Modification of more than 3-4 tyrosine residues per bacteriorhodopsin monomer caused a decrease in the light-induced proton-pumping ability of purple membrane in synthetic lipid vesicles, loss of the sharp X-ray-diffraction patterns characteristic of the crystal lattice, loss of the absorbance maximum at 560 nm, and change in the buoyant density of the membrane. No modification of lipid was detected. These changes were interpreted as a gradual denaturation of the protein component such that when 8-9 tyrosine residues are modified, no proton pumping is observed. Modification of less than 3-4 tyrosine residues with tetranitromethane caused an increase in light-induced proton pumping. It was possible to generate partly modified purple membrane which had completely lost the property of diffracting X-rays into the sharp pattern observed with native purple membrane, but which still retained the ability to pump protons in a vectorial manner. Retention of crystal lattice is not essential for proton pumping.

The extreme halophile Halobacterium halobium synthesizes distinct purple-coloured patches in the cell membrane when grown in the light and at low oxygen partial pressures (Stoeckenuis & Kunau, 1968; Oesterhelt & Stoeckenuis, 1974). These patches, termed the purple membrane, can occupy up to 50% of the area of the cell membrane and can be easily isolated and purified (Oesterhelt & Stoeckenuis, 1974). The purple membrane contains a single species of protein, bacteriorhodopsin, which makes up 75% of the dry weight of the membrane and contains a single retinal moiety per protein molecule, bound to the protein by Schiff-base linkage to a lysine residue (Oesterhelt & Stoeckenuis, 1971; Bridgen & Walker, 1976).

Bacteriorhodopsin has a relative molecular mass of 25000 (Oesterhelt & Stoeckenuis, 1971; Bridgen & Walker, 1976) and is arranged within the membrane in a regular two-dimensional hexagonal lattice with three molecules per unit cell, described by the crystallographic space group P3 (Blaurock, 1975; Henderson, 1975). This unusually favourable arrangement of a membrane protein has allowed a three-dimensional structure of bacteriorhodopsin at 0.7 nm (7 Å) resolution to be prepared (Henderson & Unwin, 1975). Purple membrane therefore lends itself well to the kind of chemical analysis we have been developing for multi-subunit enzymes and viruses (Perham, 1975). It has symmetry, it can be studied by electron microscopy and X-ray-diffraction techniques and it can be regarded as an enzyme, with light as the substrate and proton translocation as the product. In the present paper we describe the effect of treatment of the membrane with tetranitromethane. We chose this reagent because nitration of tyrosine residues can take place in hydrophobic as well as hydrophilic environments (Dickerson et al., 1971; Myers & Glazer, 1971); modification of tyrosine residues might reveal their part, if any, in the biological activity of the membrane, and the formation of nitrotirosine can be the first step in a method for preparing chemically-defined heavy-atom derivatives of proteins (Riley & Perham, 1973), which would facilitate the interpretation of electron-density maps.

Materials and Methods

Materials

The pyruvate dehydrogenase complex from Escherichia coli was a gift from Dr. G. Hale, and potassium cholate was a gift from Dr. J. Metcalfe. Horse heart cytochrome c (type III), 13-cis-retinal (type XV), and valinomycin were bought from Sigma (London) Chemical Co., Poole, Dorset, U.K.; tetranitromethane was bought from Aldrich Chemical Co., Wembley, Middlesex, U.K.

Asolectin (95% purified soya-bean phosphatidies)
was bought from Associated Concentrates, New York, NY, U.S.A., and further purified by exhaustively washing and stirring in dried acetone, filtering, drying under vacuum, dissolving in diethyl ether, and precipitating from dried acetone. This procedure was repeated several times. The product was dried under vacuum and stored under N₂ in small batches at −15°C. *Halobacterium halobium*, strain R1, was grown and the purple membrane extracted and purified as described by Oesterhelt & Stoeckenius (1971).

**Treatment of purple membrane with tetranitromethane**

The procedure was essentially that advocated for proteins by Riordan & Vallee (1972). Dark-adapted purple membrane was incubated with tetranitromethane in the dark at approx. 32°C, and the reaction stopped by passing the mixture, in the dark, down a column (25 cm x 1 cm) of Sephadex G-25 (medium) equilibrated with water at 20°C. The concentration of bacteriorhodopsin in the effluent was measured by amino acid analysis. All spectra of the purple membrane samples were recorded in water on a Cary 118 spectrophotometer at room temperature.

**Lipid analysis**

Lipids from native and tetranitromethane-treated purple membrane were extracted with chloroform/methanol (4:1, v/v), dried, dissolved in chloroform and run on thin-layer plates (Merck, pre-coated silica gel, F-254). Three different solvent systems were used: (1) chloroform/methanol/acetic acid/water (75:22:8:3, by vol.); (2) chloroform/methanol/water (65:30:4, by vol.); (3) chloroform/methanol/water/aq. NH₃ (sp.gr. 0.880) (65:30:3:1, by vol.). The spots were located by soaking the plates in a solution of approx. 15% (w/v) (NH₄)₂SO₄ saturated with ceric sulphate, drying and charring the spots.

**Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis**

Purple membrane samples were run in 7.5% (w/v) polyacrylamide gels containing 0.1% sodium dodecyl sulphate by the method of Shapiro et al. (1969). The gels were calibrated for relative molecular mass as described by Perham & Thomas (1971) with cytochrome c (Margoliash & Frohnhirt, 1959) and the component enzymes of the pyruvate dehydrogenase complex (Perham & Thomas, 1971) as markers.

**Reconstitution in lipid vesicles**

Purple membrane was incorporated into vesicles of asolectin essentially by the method of Racker & Stoeckenius (1974). Potassium cholate and asolectin were added to a suspension of purple membrane in 0.15 M-KCl to final proportions bacteriorhodopsin: asolectin:potassium cholate of 1:4:4 (by wt.) and a cholate concentration of 2% (w/v). This mixture was sonicated in a Megason sonic bath (Ultrasonic Instruments International, New York, NY, U.S.A.), until clear and dialysed for 5 days against 4 x 9 litres of 0.15 M-KCl to remove the cholate. Illumination was provided by a 650W lamp (Atlas A1/233) without the use of filters or lenses. Samples were prepared in batches with a control (unmodified purple membrane) and the pumping activity, measured as ng-atoms of protons pumped to achieve steady pH differences per nmol of protein (typical values 1.0–1.2), was expressed as a percentage of the control result.

**Sucrose-density-gradient centrifugation**

Samples, of native or modified purple membrane in water were layered on sucrose density gradients (30–60%, w/v), and run in a Beckman L5-50 ultracentrifuge at 8500 g (rₑₑₑₑ, 11.8 cm) for 20 h at 4°C using an SW27 rotor. The coloured bands were collected and a measured volume was weighed at 21°C to give the density.

**Electron microscopy**

Samples were negatively stained with 1% ammonium molybdate and photographed with help from Dr. D. Ellar and Dr. T. M. A. Wilson, using an AEI electron microscope, model 801.

**X-ray scattering**

The scattering of X-rays by wet pelleted samples of native and modified purple membrane was kindly measured by Dr. R. Henderson of the M.R.C. Laboratory of Molecular Biology, Cambridge (see Henderson, 1975). The method was used only to detect the presence or absence of scattering from the regular lattice arrangement of bacteriorhodopsin molecules in the membrane (Blaurock & Stoeckenius, 1971; Blaurock, 1975; Henderson, 1975).

**Amino acid analysis**

Samples were hydrolysed in sealed evacuated tubes at 105°C in 5.7 M-HCl containing 5 mm-2-mercaptoethanol for 24, 48 and 72 h respectively. The amino acids were analysed by a Rank Hilger Chromaspeck Amino Acid Analyser. The amount of nitrotyrosine present was calculated by using the colour constant for aspartic acid (D. L. Bates, personal communication). The sum of tyrosine plus nitrotyrosine residues from purple membrane treated with tetranitromethane was always less than the number of tyrosine residues in the unmodified purple membrane, in agreement with results obtained by other workers with other proteins (Boesel & Carpenter, 1970; Vincent et al. 1970; Burleigh et al., 1976). Therefore tyrosine modification was expressed in terms of the percentage of tyrosine residues that were not recovered as tyrosine after amino acid analysis. In general, only about 60% of the modified tyrosine
residues were found as nitrotyrosine after amino acid analysis.

The protein concentrations of samples were calculated by using the molecular composition values of lysine (7), arginine (7), aspartic acid (15), glutamic acid (16), valine (20) and phenylalanine (13) as published by Bridgen & Walker (1976). Our analyses indicated 10 tyrosine residues per molecule of bacteriorhodopsin, in agreement with Kushwaha et al. (1976) and Keefer & Bradshaw (1977), compared with 11 tyrosine residues per mol found by Bridgen & Walker (1976). We have used the value of 10 throughout this paper.

Results

Proton-pumping ability

By increasing the molar ratio of tetranitromethane to bacteriorhodopsin in the reaction mixture (from 1.0 to 100 mol/mol), preparations of purple membrane were obtained in which an increasing proportion of the tyrosine residues had been modified. Bacteriorhodopsin contains no cysteine residues (Oesterhelt & Stoeckenius, 1971; Bridgen & Walker, 1976; Keefer & Bradshaw, 1977) and, by amino acid analysis, we detected no effect of tetranitromethane on methionine or histidine residues. As a result of the treatment, the colour of the membrane changed from purple (unmodified) to blue–purple (29% tyrosine residues modified) to red (61% tyrosine residues modified) and finally to orange–yellow (84% tyrosine residues modified).

Samples of the various membrane preparations were incorporated into synthetic lipid vesicles and tested for their light-dependent ability to pump protons at 22°C. Fig. 1(a) shows that in the early stages of tyrosine modification, proton-pumping ability actually rose about 20% above the control value and then, after about 35% of the tyrosine residues had been modified, steadily fell away to zero. Over 80% of the tyrosine residues in bacteriorhodopsin could be modified under the conditions we used. The linearity of the proton-pumping assay with respect to bacteriorhodopsin was checked by preparing vesicles in which the protein concentration was 162 nmol/ml, compared with the concentrations of 40–110 nmol/ml used in the nitration experiments, and showing that the extent of proton pumping in diluted samples of this stock solution was directly proportional to the protein concentration. Racker & Stoeckenius (1974) and Racker & Hinkle (1974) using protein:valinomycin ratios of 4200 (w/w) and 500 (w/w) respectively showed that valinomycin increased the rate of proton uptake in the light and of proton release in the dark from purple-membrane/lipid vesicles. The extent of proton uptake was sometimes increased and sometimes decreased in their experiments. The presence of valinomycin caused an approximate doubling of the rate of light-induced proton uptake in our vesicle preparations and a 64% increase in the extent of proton uptake when used at a protein:valinomycin ratio of 860 (w/w). These experiments with valinomycin make it clear that the activities we were measuring were due to light-induced proton-pumping rather than to some other process.

X-ray-diffraction analysis

Samples of purple membrane after treatment with tetranitromethane were examined by X-ray-diffraction analysis. Increasing modification caused loss of the crystal lattice and the correlation of loss of lattice with extent of tyrosine modification is shown in Fig. 1(b).
modified tyrosine residues of cation, of 560nm an absence than nitrotyrosine on amino acid analysis and the chemical identity of the absorbing species is somewhat obscure. Oesterhelt et al. (1973) showed that the retinylidene protein formed at high concentrations of dimethyl sulphoxide (80-95%) absorbed maximally at 381 nm with an extinction coefficient approximately two-thirds of that of the unmodified purple membrane at 560nm. There is no evidence of such a band in the spectra shown in Fig. 2 and the change in $A_{560}$ can best be attributed to the presence of modified tyrosine residues. Thus there is no evidence of protein denaturation sufficient to cause substantial disruption of protein-retinal interactions, and little change noted in the $A_{560}$, until about 30% of the tyrosine residues have been modified.

Sucrose-density-gradient centrifugation
Samples of membrane containing 0% (purple), 29% (purple-red), 61% (red) and 84% (orange-yellow) tyrosine residues modified by treatment with tetranitromethane ran as single sharp bands on sucrose density gradients. A mixture of these samples separated into a sharp purple-coloured band with a density of 1.174 g/ml (0 and 29% tyrosine residues modified) and a sharp orange-coloured band with a density of 1.192 g/ml (61 and 84% tyrosine residues modified). This is consistent with two principal physical states of the membrane.

Electron microscopy
Electron micrographs of negatively-stained membrane showed that there was a progressive decrease in the average diameter of the sheets from about 850 nm for unmodified membrane to about 150 nm for a sample with 51% of the tyrosine residues modified. As the number of modified tyrosine residues increased, the electron micrographs also showed an increased number of small membrane particles, some quite irregular in outline.

Lipid analysis
The lipid was extracted from samples of native and tetranitromethane-treated purple membrane and compared by t.l.c. When 67% of the tyrosine residues of bacteriorhodopsin were modified, no evidence was obtained for a change in the pattern of spots in any of the three solvent systems used. Similarly, 13-cis-retinal, and 13-cis-retinal that had been treated with a 35-fold molar excess of tetranitromethane at pH 8.0, appeared identical on thin-layer chromatograms in all three solvent systems.

Polyacrylamide-gel electrophoresis in sodium dodecyl sulphate
Samples of purple membrane treated with tetranitromethane were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (Fig. 3). A heavily staining band corresponding to that from the unmodified membrane was observed, together with a faint band of apparent relative molecular mass 38,400. This higher-molecular-mass species was present in all samples from membrane treated with tetranitromethane that had more than 15% of the tyrosine residues modified. Quantitative
scanning of the gels showed that the intensity of stain in the higher-molecular-weight component did not increase greatly with the extent of tyrosine modification, reaching a maximal value of about 16% of the colour found in the monomer band.

In our experiments, as in those of others, bacteriorhodopsin showed an apparent relative molecular mass of about 20000 on gel electrophoresis, although its true relative molecular mass is 25000 (Bridgen & Walker, 1976). The higher-molecular-mass species is therefore running in the position of a cross-linked dimer.

Discussion

Treatment of purple membrane with tetrani-romethane caused first an increase (up to 35% tyrosine residues modified) and then a gradual and complete inhibition (at 85% tyrosine residues modified) of the light-induced proton-pumping ability, measured after incorporation of the modified membrane into synthetic lipid vesicles (Fig. 1a). The chemical modification also led to loss of the initially sharp X-ray-diffraction pattern from the membrane (Fig. 1b), signifying complete loss of long-range order in the crystal lattice after about 40% of the tyrosine residues had been modified. On the other hand, the retention beyond this stage of proton-pumping ability, and of the absorbance at 560 nm caused by retinal–protein interactions (Fig. 2), indicates that substantial disruption of the local structure of bacteriorhodopsin did not occur until the tyrosine residues had been extensively modified. The loss of long-range order in the membrane revealed by X-ray-diffraction analysis can be attributed to changes in the bacteriorhodopsin since the treatment with tetraniromethane appears to have caused no change in the lipid or retinal components, as judged by t.l.c. It is not known whether the crystalline array of unmodified purple membrane is retained after incorporation of bacteriorhodopsin into the synthetic lipid vesicles described in the present paper. However, it is extremely unlikely that modified purple membrane that shows no sharp X-ray-diffraction pattern could form crystalline arrays of modified bacteriorhodopsin in artificial lipid vesicles. We infer that possession of a crystal lattice is not essential to proton pumping. This is consistent with the observations of proton pumping in various preparations of reconstituted vesicles lacking in protein crystallinity (Hwang & Stoeckenius, 1977), the demonstration of proton pumping in reconstituted vesicles above and below the lipid phase transition (Racker & Hinkle, 1974), and by the reconstitution of functional bacteriorhodopsin on the addition of retinal to cells in which the precursor bacterio-opsin molecules appear to have diffused laterally out of the characteristic two-dimensional lattice (Sumper et al., 1976; Cherry et al., 1977). Cherry et al. (1978) have reviewed and discussed much of this evidence.

The initial rise in light-induced ability to pump protons that accompanied the early stages of tyrosine modification in purple membrane (Fig. 1a) could be a direct effect. However, the increase is manifest at low extents of tyrosine modification, and could equally well be due to the presence of an increased proportion of vesicles in which the purple membrane in oriented in the same direction. The orientation of purple membrane in synthetic vesicles has been shown to be strongly dependent on the pH during reconstitution (Happe et al., 1977), a factor that was not controlled carefully in the present experiments based on Racker’s method (Racker, 1973; Racker & Stoeckenius, 1974). Chemical modification of the membrane could affect its propensity to orient in the vesicles.

It is interesting that a number of properties of the purple membrane were largely unaffected until about 35% of the tyrosine residues in bacteriorhodopsin had been modified. This is true of the proton-pumping activity (Fig. 1), of X-ray scattering from the crystal lattice (Fig. 1b), of the amount of retinal that could be extracted from the membrane as retinaloxime, of the absorbance in the region of 560 nm (Fig. 2), and of the buoyant density of the membrane in sucrose-density-gradient centrifugation. The simplest explanation would be that about 3–4 tyrosine residues per chain can be modified with little or no effect on the bacteriorhodopsin molecule, but that further modification of tyrosine residues leads to significant changes in the properties tested.
Amino acid-sequence analysis will be required to elaborate this work and to show whether particular tyrosine residues are involved. It would also be helpful to know the chemical identity of the modified tyrosine residues that cannot be recovered as nitrotyrosine since these comprise about 40% of the tyrosine residues affected by the treatment with tetranitromethane. If they are taking part in cross-links in the molecule, e.g. as diyrosine, such cross-links must be mostly intramolecular since sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed comparatively little bacteriorhodopsin running in the dimer position.

We thank the Science Research Council for financial support and the Wellcome Trust for funds to purchase equipment. We acknowledge the skilled assistance of Mr. Parr and helpful discussion with Dr. R. Henderson.

References