now you can measure testosterone and dihydrotestosterone separately or together

Our new RIA kit is the simplest and fastest available for the assay of testosterone and dihydrotestosterone, separately or together in research applications in a wide range of biological samples.

To assay both androgens together a high specific activity tritium label gives the assay a very sensitive detection limit of 3 pg dihydrotestosterone per incubation tube. Also, a wide range of concentration levels can be assayed, up to 400 pg testosterone and 800 pg dihydrotestosterone per incubation tube.

Separation of the two androgens is achieved without the need for column chromatography by the use of a novel oxidation step which destroys the testosterone present. The assay of the unaffected dihydrotestosterone is achieved with a simple protocol incorporating a short incubation time of 2½ hours. Standards for both androgens are provided. Accurate results are obtained easily and quickly.

new
testosterone/dihydrotestosterone RIA kit

The Radiochemical Centre Amersham

For further information please write or phone
The Radiochemical Centre Limited, Amersham, England. Telephone 0244 4444
In W Germany Amersham Buchler GmbH & Co KG, Braunschweig. Telephone 05307 4693 97
The Biochemical Journal
Cumulative Indexes

Save Research Time
Busy researchers and authors find that these multi-volume indexes are invaluable. Where time is money the cost is recovered quickly. Produced as a service to subscribers and priced accordingly.

<table>
<thead>
<tr>
<th>Volumes</th>
<th>£</th>
<th>p</th>
<th>US $</th>
</tr>
</thead>
<tbody>
<tr>
<td>21–30</td>
<td>0.75</td>
<td>0.75</td>
<td>2.50</td>
</tr>
<tr>
<td>31–40</td>
<td>2.00</td>
<td>2.00</td>
<td>5.50</td>
</tr>
<tr>
<td>41–65</td>
<td>2.75</td>
<td>2.75</td>
<td>7.50</td>
</tr>
<tr>
<td>66–90</td>
<td>3.25</td>
<td>3.25</td>
<td>9.00</td>
</tr>
<tr>
<td>91–115</td>
<td>5.25</td>
<td>5.25</td>
<td>13.00</td>
</tr>
<tr>
<td>116–130</td>
<td>5.50</td>
<td>5.50</td>
<td>15.00</td>
</tr>
<tr>
<td>131–144</td>
<td>7.00</td>
<td>7.00</td>
<td>17.50</td>
</tr>
<tr>
<td>145–160*</td>
<td>8.00</td>
<td>8.00</td>
<td>16.00</td>
</tr>
</tbody>
</table>

(* free to subscribers from 1977)

Available from:

The Biochemical Society
(Publications)

PO BOX 32 Commerce Way
Whitehall Industrial Estate
Colchester CO2 8HP Essex

ADVERTISING RATES

Cover and Special Positions £135
Full Page £105
Half Page £60
Quarter Page £37.50
Agency Commission 10%
Publisher’s Discount 10%

All communications regarding advertising matters should be addressed to:

Advertisement Section,
Biochemical Society,
60 Church Crescent,
London N20 0JP
Telephone: 01-368 8630
BIOCHEMISTRY OF THE CELL NUCLEUS

Edited by P. B. Garland and A. P. Mathias
(ISBN 0 904498 03 4) £15.00 U.S. $30.00

The articles of this Symposium deal with aspects of the structure and function of the cell nucleus, at several levels of molecular and biological organization. Although much is already known of the way in which the genetic information of eukaryotic cells is stored, replicated, transcribed and processed, the scale and intricacy of the operation is immense in comparison with the simpler and more amenable bacterial systems. Accordingly our knowledge of the more highly evolved eukaryotic systems is far from complete, both in concept and detail. The articles not only review present knowledge; no less importantly they identify areas where mystery is more obvious than mechanism, and they pose some of the central questions that future research will have to answer.

Biochemistry of the Cell Nucleus will be timely reading for those in life or medical sciences who, either by their teaching or research, or just general intellectual curiosity, desire to deepen their understanding of how the nucleus masterminds the incredibly complex but beautifully co-ordinated activities of the cell.

List of contents and authors:
Multiplicity of Animal Cell Deoxyribonucleic Acid Polymerases by G. Brun & F. Chapeville.
The Deoxyribonucleic Acid Polymerases of Non-Vertebrate Eukaryotes by A. G. McLennan & H. M. Keir.
An Approach to the Understanding of Messenger Ribonucleic Acid Synthesis, Processing and Regulation in Eukaryotes by R. Williamson.
Chromatin Structure by J. O. Thomas.
Structure and Function of Nuclear Membranes by W. W. Franke.
Mitosis and Microtubule Assembly by M. Jacobs & T. Cavalier-Smith.

THE BIOCHEMICAL SOCIETY BOOK DEPOT
P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.
The Cytochalasins: (Greek: cytos, cell; chalasis, relaxation)

Versatile Probes for Cytological Research

The Cytochalasins are a group of structurally related fungal metabolites discovered in 1964 in the laboratories of the Pharmaceuticals Division of Imperial Chemical Industries, Ltd. The Cytochalasins share a number of unusual, interesting and characteristic effects on the cell and are becoming increasingly important as research probes in cytology. To date, Cytochalasin B has been used in the vast majority of reported experiments.

Major biological effects observed with the Cytochalasins include:

1. Inhibition of the division of cytoplasm. Total inhibition of cytoplasmic cleavage is obtained without interference with division of the nucleus resulting in binucleate cells. If cultured cells are allowed to remain in the active medium, nuclear division continues and large multinucleate cells are observed.

2. Reversible inhibition of cell movement. When moving L cells on a glass surface are treated with Cytochalasin B, peripheral and internal cell movements disappear, but are readily restored by washing the cells with normal medium. This effect is best observed by time-lapse cinematographic studies.

3. Induction of nuclear extrusion. In this very interesting phenomenon, it is remarkable that a cell can be induced to eject its nucleus entirely within minutes of treatment with a chemical compound. Most noteworthy is the fact that Cytochalasin E rarely produces nuclear extrusion. However, it is unique in producing a "halo" around the nucleus.

The Cytochalasins also exert inhibitory effects on the following biological processes: phagocytosis, platelet aggregation and clot retraction, glucose transport, thyroid secretion, and release of growth hormone.

Cytochalasin A has been shown to be a sulfhydryl-reactive agent, inhibiting growth and sugar uptake in Saccharomyces strain 1016.

The antibiotic and antitumor activities of Cytochalasin D have been reported.

Research continues to uncover new biological effects for these Cytochalasins. Space does not allow us to cite the several hundred references from the literature but a data sheet and comprehensive bibliography are available free upon request.

Cytochalasins A, B, and E are manufactured in England by Imperial Chemical Industries, Ltd. and are distributed by Aldrich.

| Aldrich Chemical Company, Inc. |
| Craftsmen in Chemistry |

Corporate Offices:
Aldrich Chemical Co., Inc.
940 W. Saint Paul Ave.
Milwaukee, Wisconsin 53233
U. S. A.

Great Britain:
Aldrich Chemical Co., Ltd.
The Old Brickyard, New Road
Gillingham, Dorset SP8 4JL
England

Belgium/Continental Europe:
Aldrich-Europe
B-2340 Beese
Belgium

West Germany/Continental Europe:
EGA-Chemie KG
7924 Steinheim am Albuch
West Germany

Printed in Great Britain at The Spottiswoode Ballantine Press
by William Clowes & Sons Limited, London, Colchester and Beccles