The Uptake of Silicic Acid by Rat Liver Mitochondria

By ROGER N. JOHNSON* and BENJAMIN E. VOLCANI†
Scripps Institution of Oceanography, University of California San Diego,
La Jolla, CA 92093, U.S.A.

(Received 7 October 1977)

1. To gain insight into a putative role for mitochondria in silicon metabolism, mitochondrial uptake (by which it is meant the removal from the medium) of silicic acid [Si(OH)₄] was studied under conditions minimizing Si(OH)₄ polymerization. 2. Measurements of mitochondrial respiration and swelling indicated indirectly a significant uptake of Si(OH)₄ as a weak acid, but this was not confirmed when ⁳¹Si(OH)₄ was used as a tracer. ⁳¹Si(OH)₄ occupied a mitochondrial volume similar to that of ²H₂O and was relatively unaffected by mitochondrial energy status and by the pH gradient across the mitochondrial inner membrane. 3. Uptake was directly proportional to Si(OH)₄ concentration in the range 0–3 mM. 4. The uptake consisted of two components: under all conditions examined, the greater quantity, amounting to 1–2 nmol of Si(OH)₄/mg of mitochondrial protein, was bound, a major portion of it external to the inner membrane, with the lesser quantity free within the matrix space. 5. Equilibration of ³¹Si(OH)₄ between medium and matrix was a slow process, having a half-time of approx. 10 min at 22°C. 6. Mersalyl and N-ethylmaleimide inhibited the uptake by preferentially lowering the amount of Si(OH)₄ bound. Their action was somewhat variable, depending on the precise nature of the suspending medium, and suggesting that the bound material may represent polymerized forms of Si(OH)₄. 7. It is concluded that Si(OH)₄ may penetrate the mitochondrial inner membrane by a simple diffusion mechanism.

Although the siliceous nature of the cell wall of diatoms has been recognized for decades, that silicon is required nutritionally by organisms widely distributed throughout both biological kingdoms, and especially by higher animals, has been established only recently [see Carlisle (1974) and Schwarz (1974) for reviews]. In particular, in rats and chicks, silicon has been shown to be necessary for normal bone formation, and the lesion induced by silicon deprivation has been traced to an insufficient synthesis of mucopolysaccharides needed for connective-tissue assembly before calcification (Carlisle, 1974). Further, a role for mitochondria in silicon metabolism has been suggested by the finding of a relative abundance of silicon in mitochondria from diatoms (Mehard et al., 1974), osteoblasts (Carlisle, 1976) and rat liver, kidney and spleen, silicon-containing granules being observed in the matrices of isolated mitochondria from the last group (Mehard & Volcani, 1976).

The present study seeks to elucidate the mechanism by which silicon in water-soluble form as orthosilicic acid [Si(OH)₄] enters the mitochondrial matrix, and in this way attempts to extend previous work on the transport of Si(OH)₄ into intact diatom cells (Azam et al., 1974). For this purpose, Si(OH)₄ has been used under conditions minimizing its polymerization (see Iler, 1955), since silicon is found in body fluids at concentrations not exceeding 5 p.p.m. (Carlisle, 1974), i.e. equivalent to approx. 0.2 mM-Si(OH)₄, which at physiological pH probably exists as the monomeric species entirely. In addition, since it is difficult to isolate intact mitochondria in quantity from cells (e.g. diatoms) and tissues associated with mineralization, and since a physiological role for liver mitochondria is suggested by the finding of silicon-containing granules within their matrix space (Mehard & Volcani, 1976), the use of isolated rat liver mitochondria was considered appropriate for the present study.

The results suggest that Si(OH)₄ diffuses slowly into the mitochondrial matrix compartment, possibly as the undissociated acid. However, the interpretation of the data is made less certain by the limited nature of the overall uptake (i.e. removal from the medium by whatever mechanism), by the finding that the major component of the overall uptake is bound to sites of low affinity, and by the variable effects of certain inhibitors, implying uptake of more than one species of Si(OH)₄.

Abbreviation used: Hepes, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid.
* Present address: Coronary Care Unit, Green Lane Hospital, Green Lane West, Auckland 3, New Zealand.
† To whom reprint requests should be addressed.
Experimental

Methods

Preparation of mitochondria. Rat liver mitochondria were prepared by the method of Chappell & Hansford (1972) in a medium comprising 0.25M sucrose / 10mM-Tris / Hepes / 1 mM-EGTA, pH 7.4. Mitochondrial protein was measured by the method of Lowry et al. (1951), with crystalline bovine serum albumin as standard.

Incubation of mitochondria. Two types of incubation medium were used. In experiments where Si(OH)$_4$ was unlabelled, the medium contained 0.25M-sucrose/20mM-Tris/Hepes plus either 3mM Na$_2$SiO$_3$ or 6mequiv. of Na$^+$/litre as Cl$^-$ or SO$_4^{2-}$ depending on whether the Si(OH)$_4$-containing medium was adjusted to pH 7.2 with HCl or H$_2$SO$_4$. When 31Si(OH)$_4$ was used, initially a medium containing 0.129m-LiCl/25.8mM-Tris/Hepes/12.9mM-sucrose of pH 7.1 (approx.) was prepared, to which was added sufficient 31Si(OH)$_4$ solution (see below) to give finally 0.1m-LiCl/20mM-Tris/Hepes/10mM-sucrose/3mM-Si(OH)$_4$ plus 17mequiv. of Na$^+$/litre. After adjustment of the pH to 7.2 with HCl, [14C]-sucrose and $^{3}H_2$O were added to give approx. 0.1µCi/ml and 0.5µCi/ml respectively. The latter is referred to in the text as basal medium. It was varied in only one instance (see Fig. 3), when it was mixed with a corresponding solution lacking Si(OH)$_4$ but containing 17mM-NaCl to produce concentrations of Si(OH)$_4$ lower than 3mM. Unless stated otherwise, the temperature of incubation was 25°C.

Measurement of O$_2$ partial pressure. A Clark-type oxygen electrode monitored the O$_2$ partial pressure in a thermostatically controlled closed cell for quantitative purposes, and in an open cell where it was used only in a qualitative manner.

Measurement of mitochondrial swelling. The time-course of the absolute change in mitochondrial volume is reflected in the change in absorbance of the mitochondrial suspension (Tedeschi & Harris, 1955). By using a Beckman-Gilford recording spectrophotometer fitted with a thermostatically controlled cell housing and a wavelength of 650nm, changes in mitochondrial volume were monitored continuously.

Separation of mitochondria from the suspending medium and measurement of associated radioactivity. Mitochondria were separated from the suspending medium by one of two methods. When it was desired to preserve a particular energetic state, the silicone-oil-centrifugation procedure of LaNoue et al. (1973) was used as described previously (Johnson & Hansford, 1977). In other experiments where rotenone-poisoned mitochondria were used, centrifugation of 300µl samples was carried out for 1 min in a Beckman microcentrifuge (model 152) or with 1ml samples in an Eppendorf microcentrifuge (model 3200) for 1min. Larger samples (2ml or greater) were separated rapidly in a Sorvall centrifuge (model RC2-B) by accelerating maximally to 19000g and immediately braking maximally. After removal of the supernatant fraction as completely as possible, all pellets were resuspended in 2.5ml of water in vials, 8ml of Aquasol was added and the resulting gels were analysed for 31Si, 14C and 3H in a Beckman scintillation counter (model LS-230). Since 31Si has a short half-life (15min) and a β-particle emission of high energy, its radioactivity was counted first, and a discriminator was used that excluded 14C and 3H completely. After 18h had elapsed (by which time the 31Si contribution was negligible), the samples were analysed for 14C and 3H. All counts were corrected for background and quenching; in addition the 31Si counts were corrected for decay and the 3H counts for cross-contamination from 14C.

Measurement of mitochondrial spaces and assessment of 31Si(OH)$_4$ uptake. By including standard samples containing a known volume of medium (usually 25µl), experimental radioactivities (c.p.m.) were readily expressed as an equivalent volume of medium or space. Since [14C]sucrose is excluded by the mitochondrial inner membrane and 3H$_2$O distributes rapidly throughout the entire mitochondrial water (see Chappell, 1968), the volume of mitochondrial matrix water was obtained by difference. Similarly the 31Si(OH)$_4$ space was corrected for the [14C]sucrose contribution to give the extent of 31Si(OH)$_4$ uptake.

Measurement of the pH gradient across the mitochondrial inner membrane. The ion-distribution method of Nicholls (1974) was used with the single modification that the mitochondria were separated by centrifugation through silicone oil as described above. Duplicate incubations were performed for each condition: one contained [14C]sucrose and 3H$_2$O so that the matrix volume could be derived (see above), and the other contained 25µM-[14C]methylamine (approx. 0.1µCi/ml) and 10µM-[3H]acetate (approx. 0.3µCi/ml). Spaces were calculated for each radioactive isotope (see above), giving the values c for methylamine, h for acetate and m for the matrix spaces respectively. By analogy with a previously described approach (Johnson & Hansford, 1977), an absolute value (N) was calculated for (h-c)/m. The magnitude of ΔpH was then given exactly by log[(N + √(N2+4))/2], and the sign of ΔpH depended on the sign of (h-c)/m: defining ΔpH as pH$_{medium}$ - pH$_{matrix}$, for (h-c)/m > 0, ΔpH < 0, and vice versa.

Preparation and characterization of submitochondrial fractions. The mitochondrial inner membrane was removed preferentially by treatment with digitonin essentially as described by Schnaitman et al. (1967) and by Hoppel & Cooper (1968). Thus mitochondria (90mg of protein) were suspended in 1ml of 0.25M-sucrose to which was added 100µl of a
digitonin solution [10% (w/v) in 0.25M-sucrose]. The material was stirred for 20 min at 0°C, then diluted to 5 ml with ice-cold 0.25M-sucrose and centrifuged at 12000 g for 10 min. The supernatant fraction was carefully removed for analysis and is referred to as fraction I. The pellet was resuspended in 3 ml of 50 mm-potassium phosphate, pH 7.6, and sonicated by using a Branson sonifier operated at maximum power output on setting 2; three 15 s bursts of sonication were used, 1 min elapsing between each burst, and an ice/water mixture provided cooling throughout. The sonicated material was centrifuged at 100000 g for 40 min, and the supernatant fraction (fraction III) and pellet (fraction II) were separated.

All fractions were assayed for malate dehydrogenase (representative of the mitochondrial matrix), cytochrome c oxidase (representative of the mitochondrial inner membrane) and monoamine oxidase (representative of the outer membrane) essentially as described by Schnaitman et al. (1967). Recoveries of enzyme markers were close to 100%, except for the cytochrome c oxidase activity, which showed some loss (20%) after sonication. This may have been due to partial inversion of the particles causing the oxidase to become latent. In any event, little cytochrome c oxidase was recovered in fractions other than fraction II, so that any error of this sort was insignificant. Since it was desired to measure 31Si(OH)$_4$ binding in this type of experiment and considerable dilution of material was involved in the fractionation procedure, samples were run in parallel to assure that any simple reversibility of binding that otherwise would contribute to fraction I. Thus samples lacking digitonin were treated in a similar fashion and analysed for 31Si and 14C so as to correct the data for fraction I. Other fractions were not corrected in this manner, since most of the 31Si(OH)$_4$ was recovered in fraction I, and error elsewhere would not have affected the conclusions.

Preparation of Si(OH)$_4$ solutions. Unlabelled Si(OH)$_4$ was prepared by dissolving Na$_2$SiO$_3$,9H$_2$O in the incubation medium to give a final concentration of 3 mM. The medium was then adjusted to pH 7.2 by dropwise addition of 1 M-HCl with constant stirring. 31Si(OH)$_4$ was prepared as previously described (Azam et al., 1974), except that the stock solution was made up to 100 ml and contained 13.3 mCi of 31Si(OH)$_4$. Neutralization of the concentrated stock solution gave rise to polymerization of Si(OH)$_4$, which was apparent for several hours after dilution to 3 mM. In general, therefore, the stock solution was kept at alkaline pH until diluted to 3 mM in the incubation medium, when it was adjusted to pH 7.2. The medium prepared in this way contains 17 mequiv. of Na$^+$/litre arising from the stock Si(OH)$_4$. The activity of the 3 mM-31Si(OH)$_4$ solution immediately after preparation was approx. 0.2 mCi/ml or 70 mCi/mol. Samples were analysed within 5 h of the solution's preparation, i.e. within two half-lives of 31Si.

Assay of Si(OH)$_4$. Si(OH)$_4$ was assayed by the method of Túma (1962). Although the method relies on a reaction with molybdate at low pH, Alexander (1953) has pointed out that this is only relatively specific for monomeric Si(OH)$_4$ and does not exclude the possibility of reaction with the dimeric species. Species of higher degrees of polymerization were assayed by the same method (Túma, 1962) after treatment with 2 M-NaOH and heating at 100°C for 15 min to effect depolymerization.

Materials

Carboxyl cyanide m-chlorophenylhydrazone was obtained from Calbiochem, Los Angeles, CA, U.S.A., and rotenone and valinomycin were from Sigma Chemical Co., St. Louis, MO, U.S.A.; these compounds were added as ethanolic solutions. Digitonin was from K & K Laboratories, Irvine, CA, U.S.A. Mersalyl [o-(3-hydroxymercuri-2-methoxypropyl)-carbamoylphenoxacetic acid] and N-ethylmaleimide were from Sigma Chemical Co. Radioactive chemicals were from ICN, Irvine, CA, U.S.A., except for 31SiO$_2$, which was obtained by subjecting a sample of Speckpure-grade SiO$_2$ from Johnson Matthey Chemicals, London E.C.1, U.K., to neutron bombardment carried out by Gulf Energy and Environmental Systems, San Diego, CA, U.S.A. Also 68Ge and Aquasol were obtained from New England Nuclear, Boston, MA, U.S.A. Dextran T-40 and Ficoll were from Pharmacia, Uppsala, Sweden. Crystalline bovine serum albumin was obtained from Sigma Chemical Co.

Except as noted above, all reagents were dissolved in double-glass-distilled water, and were of the highest grade available. Wherever possible plastic ware was used for handling and storing solutions, to minimize the contribution of stray Si(OH)$_4$.

Results

Effects of Si(OH)$_4$ on mitochondrial respiration and swelling

Since the effects of Si(OH)$_4$ on mitochondrial metabolism have not been studied extensively (but see Kersten et al., 1958, for some early observations), initial experiments were directed towards establishing whether Si(OH)$_4$ could interact in any way with the enzymes involved in oxidative phosphorylation, as suggested for the bacterium Proteus mirabilis (Heinen, 1967). It should be emphasized that in the present work Si(OH)$_4$ was used at a concentration not exceeding 3 mM to minimize its polymerization (see Rowell & Leonard, 1958; confirmed in this laboratory) and participation of multiple species of Si(OH)$_4$. Also, it is worth noting that although
solid Na$_2$SiO$_3$ was the form of silicate added to the incubation media in these experiments, the meta-
silicate ion SiO$_4^{2-}$ does not exist in solution, the simplest silicate ion in an aqueous environment being the ortho form, SiO$_4^{4-}$ (Carman, 1940).

With glutamate plus malate, β-hydroxybutyrate or succinate as respiratory substrate, no effect of Si(OH)$_4$ was discerned on the phosphorylation of added ADP or on the uncoupled oxidation of these substrates. However, in experiments designed to test whether Si(OH)$_4$ might be translocated into the mitochondrial matrix as a weak acid species like acetate or P$_i$ (Chappell & Crofts, 1966), some small differences caused by the presence of Si(OH)$_4$ were observed. The experimental system made use of the fact that when added to respiring mitochondria K$^+$ ions, in the presence of valinomycin, plus a penetrant weak acid species cause rapid mitochondrial respiration and swelling owing to salt accumulation (Chappell & Crofts, 1966). Sucrose was used as the bulk osmotic support, since in ionic media more rapid rates of respiration were observed, possibly masking any increment caused by Si(OH)$_4$. In addition, the control media contained an equivalent concentration

![diagram](image)

Fig. 1. Measurements of rates of mitochondrial respiration and swelling
For the measurement of respiration rate (a) approx. 7mg of mitochondrial protein (M) was added to 1.9ml of a sucrose medium (see the Experimental section) saturated with air at 25°C and containing 5mm-sodium succinate, 4µg of rotenone and 0.5µM-valinomycin. After 1.2min, K$^+$ ions (as Cl$^-$ or SO$_4^{2-}$, as appropriate) were added to a final concentration of 5mequiv./litre. The final steady-state rate of respiration was measured as indicated by the broken line. For the measurement of swelling (b) the conditions were as for (a) except that approx. 2mg of mitochondrial protein were suspended in a final volume of 2.5ml. After a steady absorbance reading was achieved, K$^+$ ions were added to a final concentration of 5 mequiv./litre at arrow 1 and rapid swelling ensued. The initial rate of swelling was measured directly by eye (-----) and by calculating the absorbance change in the first 20s, i.e. between arrows 1 and 2.

Table 1. Effect of Si(OH)$_4$ on mitochondrial respiration and swelling

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Increment by Si(OH)$_4$ (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration</td>
<td>12.4 ± 0.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Swelling</td>
<td>30.6 ± 5.5</td>
<td><0.01</td>
</tr>
</tbody>
</table>

of NaCl or Na$_2$SO$_4$, depending on whether the Si(OH)$_4$-containing medium was neutralized with HCl or H$_2$SO$_4$; correspondingly K$^+$ ions were added as Cl$^-$ or SO$_4^{2-}$ to maintain anionic homogeneity. The methods of measurement are illustrated in Fig. 1 to clarify their nature and time relations: when respiration was monitored (Fig. 1a), a slowly
increasing rate was observed, reaching a steady state, which was readily measured, approx. 2 min after the addition of K⁺; the most reproducible characteristic of the swelling experiments was the initial rate, which was measured by two methods (Fig. 1b), which gave very similar results. Since there was no appreciable difference between experiments conducted in the presence of Cl⁻ and those with SO₄²⁻, consistent with a specific effect of Si(OH)₄, the data were pooled and are presented as such in Table I. Both types of measurement gave a significant increment, due to the presence of Si(OH)₄ (Table I), suggesting that active accumulation of Si(OH)₄ was responsible; although respiration was affected to a lesser extent, it was the more accurate of the two types of measurement and the more reproducible.

Direct measurement of Si(OH)₄ uptake

The experiments described above indicated indirectly that Si(OH)₄ was transported to a limited extent and in a manner dependent on mitochondrial energy status. This was investigated directly by using a radioactive tracer of Si(OH)₄. Initially ⁶⁸Ge(OH)₄ was used, since this radioactive isotope is available commercially, and in diatoms has been found to mimic Si(OH)₄ (Azam, 1974). However, in the mitochondrial system it was unsuitable for the following reasons: (i) ⁶⁸Ge(OH)₄ uptake was independent of Si(OH)₄ concentration in the range 0–3 mM; (ii) ⁶⁸Ge(OH)₄ uptake showed little dependence on the degree of structural integrity of the mitochondria or on the amount of mitochondrial protein present in the incubation medium. For these reasons, it became necessary to use ⁴³Si(OH)₄, a radioactive isotope of short half-life (156 min) and obtainable only at a low specific radioactivity.

Care was required in the handling of the stock ⁴³Si(OH)₄ solution to avoid polymerization of the Si(OH)₄. The effect of polymerization was most dramatically illustrated when frozen–thawed mitochondria were incubated with ⁴³Si(OH)₄ (Fig. 2). When the ⁴³Si(OH)₄-containing medium was prepared in such a manner (see the Experimental section) that polymerization was readily detected (at least 20% of total silicon as a polymer) the amount of ⁴³Si(OH)₄ taken up was large and relatively independent of protein concentration (Fig. 2). However, when the ⁴³Si(OH)₄-containing medium had an undetectable (less than 5%) content of polymerized species, the amount taken up was much less and was now directly proportional to protein concentration (Fig. 2). In both cases, the ¹⁴C-sucrose and ³H₂O spaces were identical and gave values very similar to those of unpolymerized ⁴³Si(OH)₄ when expressed in terms of occupied volume (Fig. 2), indicating the lack of a permeability barrier for sucrose and the presumption of extensive binding of the polymerized species. Thus in all succeeding experiments, the stock ⁴³Si(OH)₄ solution was handled in such a way that polymerization was minimized (see the Experimental section for further details).

Effect on Si(OH)₄ uptake of mitochondrial energy status and pH gradient across the mitochondrial inner membrane

The effect of mitochondrial energy status on Si(OH)₄ uptake was investigated by using a silicone-
oil-centrifugation technique, since such a method has been shown to preserve mitochondrial energy states until complete separation of organelles from the suspending medium has been accomplished (Davis & Lumeng, 1975; Johnson & Hansford, 1977). Control experiments with rotenone-treated mitochondria showed that neither the silicone oil nor the dextran added to the medium (LaNoue et al., 1973) affected the results appreciably. However, for ease of separation of the mitochondria it was not possible to use the sucrose-based medium of the separation experiments described above. Accordingly LiCl was substituted for sucrose, since it was desired to manipulate the pH gradient across the mitochondrial inner membrane (ΔpH), which may be done successfully in a medium almost free of K⁺ ions. The use of NaCl as a bulk osmotic support was avoided, since Na⁺/H⁺-exchange activity in liver mitochondria is marked (Mitchell & Moyle, 1969) and might have compromised attempts to alter ΔpH (cf. Johnson & Hansford, 1977). By comparison, Li⁺/H⁺ exchange activity, as judged by mitochondrial swelling in iso-osmolar lithium acetate, is very much slower (R. N. Johnson, unpublished work).

Two conditions were used extensively to assess the effect of energy status and ΔpH: the 'high-energy' state comprised a medium containing a low concentration of K⁺ and valinomycin, designed to cause internal alkalinization (Nicholls, 1974), whereas in the 'low-energy' state, valinomycin and uncoupling agent were added to give internal acidification (Nicholls, 1974). The effect of these manoeuvres on ³¹Si(OH)₄ uptake and mitochondrial matrix volume is shown in Table 2. In the energized condition (ΔpH = −0.91 ± 0.04 unit; mean ± S.E.M.; n = 4), the uptake of Si(OH)₄ increased with time in a biphasic manner and was approximately twice that found in the de-energized condition after 10 min of incubation (Table 2). The de-energized condition (ΔpH = 0.60 ± 0.01 unit; mean ± S.E.M.; n = 4) showed a similar rapid uptake phase in the first 1 min, but apparently reached equilibrium soon afterwards (Table 2). Evidence adduced below is consistent with the notion that at least the initial rapid phase of uptake (in the first 1 min) was due to binding of Si(OH)₄.

However, the effect of energy status on mitochondrial matrix volume was more dramatic, with matrix expansion in the energized and matrix shrinkage in the de-energized condition (Table 2). Thus the effect of energy on Si(OH)₄ uptake may have been a consequence of more general salt accumulation and increased intramitochondrial volume rather than a specific effect on Si(OH)₄ itself. In any event, the effect of energization and of the sign of ΔpH was not large and, in both conditions examined, the ³¹Si(OH)₄ volume approximated to the ³H₂O volume, emphasizing the limited extent of the observed uptake.

As a consequence of these findings, all subsequent experiments were performed with rotenone-poisoned mitochondria, since they provide a more uniform system on a day-to-day basis and are more easily amenable to experimental analysis. Table 2 shows that in the presence of rotenone alone the values tended to be similar to those in the de-energized condition, although ΔpH increased from −0.46 at 1 min to 0.05 unit at 10 min, in contrast with the other conditions, where it was stable throughout. In addition, a direct centrifugation procedure (i.e. without silicone oil) was adopted, since technically this is easier to carry out.

Although the effect of varying ΔpH was investigated as described above, a systematic study of the effect of varying the pH of the suspending medium was not done, as interpretation of such an experiment is not straightforward: inevitably, ionization of both Si(OH)₄ and mitochondrial components will be changed and differences in uptake cannot be attributed to one rather than the other. Thus an external pH of 7.20–7.25 was used throughout as

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Marker</th>
<th>Space (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>³¹Si(OH)₄</td>
<td>³H₂O</td>
</tr>
<tr>
<td>1</td>
<td>0.50 ± 0.08</td>
<td>0.46 ± 0.23</td>
</tr>
<tr>
<td>5</td>
<td>0.08 ± 0.09</td>
<td>0.46 ± 0.04</td>
</tr>
<tr>
<td>10</td>
<td>0.90 ± 0.15</td>
<td>0.73 ± 0.08</td>
</tr>
<tr>
<td>10</td>
<td>1.06 ± 0.06</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>10</td>
<td>1.21 ± 0.09</td>
<td>0.63 ± 0.10</td>
</tr>
<tr>
<td>10</td>
<td>1.07 ± 0.05</td>
<td>0.38 ± 0.04</td>
</tr>
</tbody>
</table>
Fig. 3. Uptake of 31Si(OH)$_4$ as a function of 31Si(OH)$_4$ concentration

Mitochondria (20 mg of protein) were added to 4 ml of incubation fluid comprising appropriate volumes of stock basal media (see the Experimental section) with or without 3 mM-Si(OH)$_4$ plus 4 µg of rotenone. Samples (1 ml, in triplicate) were centrifuged in an Eppendorf microcentrifuge after 10 min of incubation. The pellets were analysed for 31Si and 14C (added as sucrose) as described in the Experimental section. The values shown are means of the triplicate determinations corrected for 14C-sucrose contribution (see the Experimental section) and are derived from two mitochondrial preparations. The line was constructed by using linear regression analysis ($r = 0.911$).

representative of that found for liver cytosol (Iles et al., 1977).

Uptake of 31Si(OH)$_4$ as a function of Si(OH)$_4$ concentration

The overall uptake of 31Si(OH)$_4$ measured after 10 min of incubation was proportional to the concentration of Si(OH)$_4$ in the suspending medium (Fig. 3). The line through the points was drawn by using linear regression analysis and is displaced from the origin chiefly because of a single determination with 1 mM-Si(OH)$_4$. It should be borne in mind that each of the displayed values was derived after subtraction of the 14C-sucrose volume and is subject to error on this account. The tentative conclusion was that the uptake appeared to be of low affinity, and clearly was most accurately measured at the highest concentration of Si(OH)$_4$ compatible with lack of polymerization, namely 3 mM. This concentration of Si(OH)$_4$ was used in all succeeding experiments.

Vol. 172
Table 3. Separation of $^{31}\text{Si(OH)}_4$ uptake into free and bound components

Linear regression analysis was performed on the data in Fig. 4 and on data from a duplicate experiment with a different mitochondrial preparation. The intercepts on the ordinate (corrected for protein concentration), the gradients and the regression coefficients of the lines for $^{31}\text{Si(OH)}_4$ and $^3\text{H}_2\text{O}$ are presented. Bound $^{31}\text{Si(OH)}_4$ is considered to be given directly by the intercept of the line for $^{31}\text{Si(OH)}_4$ on the ordinate when expressed as an amount, whereas the concentration of $^{31}\text{Si(OH)}_4$ free within the matrix space is calculated as the ratio of the gradients of the lines, $\text{Si(OH)}_4/\text{H}_2\text{O}$, multiplied by the external concentration of $^{31}\text{Si(OH)}_4$, namely 3 mm.

<table>
<thead>
<tr>
<th>Intercept (μ/mg of protein)</th>
<th>Gradient (µmol)</th>
<th>Regression coefficient</th>
<th>Si(OH)$_4$ uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. no.</td>
<td>$^{31}\text{Si(OH)}_4$</td>
<td>$^3\text{H}_2\text{O}$</td>
<td>$^{31}\text{Si(OH)}_4$</td>
</tr>
<tr>
<td>1</td>
<td>0.39</td>
<td>0.61</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.52</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Pending medium was varied systematically, causing a proportional change in matrix volume shown by the line for $^3\text{H}_2\text{O}$. The line does not pass through the origin, the intercept on the ordinate giving the osmotic dead-space, i.e. non-solvent water probably accounted for by the hydration sphere of macromolecules (Bentzel & Solomon, 1967). Determination of $^{31}\text{Si(OH)}_4$ in the same samples produced a less-well-defined line (Fig. 4) caused by the inability to measure with sufficient accuracy the $^{31}\text{Si(OH)}_4$ space. The line for $^{31}\text{Si(OH)}_4$ does not pass through the origin either, in this case presumably because of Si(OH)$_4$ binding. In addition, a comparison of the gradients of the two lines, i.e. a comparison of the degree to which the respective spaces are affected by osmolarity, gives an estimate of the degree of equilibration of Si(OH)$_4$ between the matrix space and the suspending medium. These results are presented in Table 3 together with data from a duplicate experiment performed at another time. Thus it was found (Table 3) that after 10 min of incubation at 22°C, approx. 1 nmol of Si(OH)$_4$ was bound per mg of protein and that Si(OH)$_4$ was equilibrated to the extent of approx. 55% in the matrix compartment relative to the bulk phase.

Two questions arose directly from this type of experiment: the location of the sites of Si(OH)$_4$ binding and the reason for the lack of equilibration of Si(OH)$_4$ between the medium and the matrix space. An attempt to localize the sites of binding was made first, as the bound Si(OH)$_4$ represented the majority of the total uptake at the customary osmolarity used in other experiments (approx. 0.27 osm).

Localization of $^{31}\text{Si(OH)}_4$ within submitochondrial fractions

The procedure adopted was simply to fractionate mitochondria previously exposed to 3 mm $^{31}\text{Si(OH)}_4$ for 10 min into outer membrane, inner membrane and matrix, and to examine each fraction for $^{31}\text{Si(OH)}_4$ content, measured relative to $^{14}\text{C}sucrose$ as before. [The alternative approach of incubating $^{31}\text{Si(OH)}_4$ with relatively pure samples of outer membrane, inner membrane and matrix fractions was not attempted, since in the membrane fractions the problem of distinguishing free and bound material remains, and there is the more general concern of how the properties of the purified material relate to those of the isolated organelle. Admittedly, the procedure used here does not provide unambiguous information on inner-membrane and matrix fractions, owing to the likelihood of including unbound Si(OH)$_4$, so that care was needed in interpreting the results.] The purity of each of the fractions was judged on the basis of marker enzymes (see the Experimental section) so that each fraction could be assigned a definite proportion of each of the three loci. These data from two independent experiments are shown in Table 4(a). One further correction was applied to the $^{31}\text{Si(OH)}_4$ appearing in fraction I, since simple dilution of the starting material resulted in a loss of $^{31}\text{Si(OH)}_4$, causing $^{31}\text{Si(OH)}_4$ in fraction I to be overestimated. This correction was large (38% in Expt. 1 and 61% in Expt. 2) and is recorded (in Table 4(b)) as the proportion of the initial $^{31}\text{Si(OH)}_4$ represented by the final values. Also shown in Table 4(b) are the results of solving the three simultaneous equations involving values from fractions I–III in Table 4(a) for the amount of $^{31}\text{Si(OH)}_4$ associated with each locus. Although in one instance this procedure resulted in a negative quantity, possibly because $^{31}\text{Si(OH)}_4$ did not follow precisely the position of the enzyme markers, the conclusion was that most of the bound material was in the outer-membrane fraction.

Effect of prolonged exposure to $^{31}\text{Si(OH)}_4$

A second feature of the osmometer experiments detailed in Table 3 was the lack of equilibration of $^{31}\text{Si(OH)}_4$ between the medium and the mitochondrial matrix. Conceivably this was a kinetic
MITOCHONDRIAL SILICIC ACID UPTAKE

Table 4. Localization of 31Si(OH)$_4$ within the mitochondrion

Mitochondria were incubated in basal medium containing 0.6 μg of rotenone/ml at a protein concentration of 5 mg/ml. After 10 min of incubation at room temperature (22°C) the mitochondria were sedimented by centrifugation at 6000g for 10 min. The pellet was fractionated and the fractions were analysed for outer membrane, inner membrane and matrix in terms of marker-enzyme distribution as explained in the Experimental section. 31Si and 14C (as sucrose) were measured in each fraction, and the 31Si-space was corrected for the 14C space contributing to it. In one instance this procedure resulted in a negative corrected space for 31Si, which is recorded as not detectable (n.d.). The data from two such experiments using different mitochondrial preparations are shown in part (a). In part (b) are recorded the results of solving the three simultaneous equations involving values from fractions I, II and III in part (a) for the 31Si associated with each site. Note that simple dilution of the pellet material resulted in an appreciable loss of 31Si from the pellet, which would increase the amount of 31Si associated with fraction I. The values for each fraction I have been corrected for this non-specific removal of 31Si (see the Experimental section) and the extent of the correction is indicated by the proportion of the corrected 31Si represented by the sum of the three fractions relative to that in the initial pellet. Abbreviation: n.d., not determined.

(a)

<table>
<thead>
<tr>
<th>Expt. no.</th>
<th>Fraction</th>
<th>Proportion of</th>
<th>31Si(OH)$_4$ (nmol/mg of mitochondrial protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.15</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>0.79</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.21</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Expt. no.</th>
<th>Proportion of 31Si(OH)$_4$ (nmol/mg of mitochondrial protein) associated with</th>
<th>Proportion represented (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outer membrane</td>
<td>Inner membrane</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Table 5. Effect of prolonged incubation on free and bound components of 31Si(OH)$_4$ uptake

Duplicate experiments using different mitochondrial preparations were performed exactly as described in Fig. 4, except that centrifugation was begun after 30 min of incubation rather than at 10 min. Linear regression analysis was carried out on the experimental values and the resulting values are presented as in Table 3.

<table>
<thead>
<tr>
<th>Intercept (nl/mg of protein)</th>
<th>Gradient (µosmol)</th>
<th>Regression coefficient</th>
<th>Si(OH)$_4$ uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. no.</td>
<td>31Si(OH)$_4$</td>
<td>3H$_2$O</td>
<td>31Si(OH)$_4$</td>
</tr>
<tr>
<td>1</td>
<td>0.48</td>
<td>0.62</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>0.58</td>
<td>0.66</td>
<td>0.36</td>
</tr>
</tbody>
</table>

limitation, and this proposal was tested by repeating the experiment described in Fig. 4 with an incubation time of 30 min rather than 10 min. The results of two such experiments are shown in Table 5. By using the assumptions described above, the analysis shows that the bound component was increased relative to that calculated at 10 min, but more noteworthy is the finding that 31Si(OH)$_4$ was more nearly equilibrated (approx. 95%) after the prolonged incubation. Thus it appeared that Si(OH)$_4$ diffusion into the matrix space was a slow process and that 10 min of incubation was insufficient time to allow equilibration.

Inhibition of Si(OH)$_4$ uptake

Initially as an attempt to examine whether the mitochondrial phosphate carrier was involved in Si(OH)$_4$ permeation, the thiol-blocking reagents mersalyl and N-ethylmaleimide were tested as inhibitors of Si(OH)$_4$ uptake, since these compounds are known to inactivate the phosphate carrier (Tyler,
Mitochondria (20 mg of protein) were preincubated at room temperature (22°C) with 250 μl of 0.12 M-LiCl/20 mM-Hepes, pH 7.2, containing various amounts of mersalyl (a) or N-ethylmaleimide (b) for 2 min. The total preincubation mixture was then added to 4 ml of basal medium containing 8 μg of rotenone, 1 ml samples were removed in triplicate and centrifuged 2 min later. The 31Si(OH)$_4$ uptake (●) was corrected for [14C]sucrose space, and the space inaccessible to 31Si(OH)$_4$ (○) was obtained by subtracting the 31Si(OH)$_4$ space from the 3H$_2$O space. The data are mean values derived from the triplicate samples and were obtained with different mitochondrial preparations at different times.

Further experiments showed that by incubating mitochondria for 8 min with 31Si(OH)$_4$ followed by 2 min exposure to mersalyl, a degree of inhibition (approx. 50%) was observed similar to that seen when mitochondria were preincubated with mersalyl and then exposed to 31Si(OH)$_4$ (as in Fig. 5a). The interpretation was that mersalyl was capable of displacing 31Si(OH)$_3$ previously taken up, and presumably from an external location, since 31Si(OH)$_4$ was released into the external phase. In addition, it was demonstrated in an experiment of the type shown in Fig. 4 that mersalyl exerted a greater effect at high osmolarity (69% inhibition) than at low osmolarity (35% inhibition), the bound component being lowered to 0.3 nmol of Si(OH)$_4$/mg of protein with a calculated 1.1 mM-Si(OH)$_4$ free within the matrix compartment (cf. Table 3). Thus mersalyl appeared to affect the bound component to an extent greater than that found for the component identified with the matrix space.

In all of the experiments with inhibitors reported above, there was a degree of variability that could not be controlled satisfactorily. Experiments with mersalyl were the most reproducible and account for most of the observations described; by contrast, inhibition by N-ethylmaleimide was found in far fewer instances, so that, for example, with a given preparation of mitochondria it was possible to demonstrate inhibition of 31Si(OH)$_4$ uptake by mersalyl, but not by N-ethylmaleimide. Further, it was demonstrated that the variability was due to the particular 31Si(OH)$_4$-containing medium used for a given experiment: incubations done with the
same mitochondrial preparation in two identical media prepared independently from the same stock \(^{31}\text{Si(OH)}_4\) solution resulted in inhibition of \(^{31}\text{Si(OH)}_4\) uptake by mersalyl in one case and not in the other. The possible implications of these findings are explored in the Discussion section.

Discussion

The purpose of the present work was to determine the mode of penetration of \(\text{Si(OH)}_4\) into mitochondria to assess better the role of mitochondria in silicon metabolism. Although it is recognized that the behaviour towards silicon of mitochondria from soft tissues and from mineralizing cells may not be the same, if liver mitochondria are considered as generally representative, the results suggest that \(\text{Si(OH)}_4\) diffuses slowly into the matrix space in a manner relatively independent of mitochondrial energy status (Table 2) and of the pH gradient across the mitochondrial inner membrane, \(\Delta p\text{H}\). Considering that \(pK_1\) of \(\text{Si(OH)}_4\) is 9.8 at 25°C (Greenberg & Price, 1957), the penetrating species is probably undissociated, and the lack of dependence of the uptake on \(\Delta p\text{H}\) (with an external pH of 7.2 and an internal pH estimated to be not more than 8.2) is easily comprehended: in both phases, the undissociated acid will be the dominant form and, in mechanisms of accumulation driven by \(\Delta p\text{H}\), the concentration of an uncharged weak acid at equilibrium is the same on both sides of the inner membrane (Chappell & Crofts, 1966; Mitchell & Moyle, 1969). By contrast, the experiments in which unlabelled \(\text{Si(OH)}_4\) was used (Table 1) suggested that \(\text{Si(OH)}_4\) was responsible for an increased rate of mitochondrial swelling after salt uptake, and for an increased rate of respiration, probably as an indirect effect of salt accumulation, since this observation was made at a time when swelling was complete (Fig. 1). In view of the extremely limited uptake of \(^{31}\text{Si(OH)}_4\), it seems probable that these findings derive from a \(\text{Si(OH)}_4\)-induced change in the anion permeability of the mitochondrial inner membrane (perhaps increasing \(\text{Cl}^-\) and \(\text{SO}_4^{2-}\) permeability), possibly analogous to the deleterious effects of silica on erythrocytes (see Allison, 1968). However, proton permeability did not appear to be affected, as judged by the retention of coupling and respiratory control.

The rate of permeation of \(\text{Si(OH)}_4\) was judged to be slow (showing a half-time for equilibration of approx. 10 min at 22°C) in experiments where free and bound components could be determined (see Tables 3 and 5). In these experiments binding represented the greater portion of the uptake, and evidence from two different sources indicated that most of the binding was external to the inner membrane: (i) direct fractionation of the mitochondria showed that the majority of \(\text{Si(OH)}_4\) recovered was in the outer-membrane fraction (Table 4); (ii) when mersalyl was added to mitochondria previously incubated with \(\text{Si(OH)}_4\), the displacement of \(\text{Si(OH)}_4\) from the pellet into the external phase indicated competition between \(\text{Si(OH)}_4\) and mersalyl for an external site. In addition, the limited association of \(\text{Si(OH)}_4\) with components within the inner membrane is consistent with a slow rate of \(\text{Si(OH)}_4\) penetration into the matrix compartment.

The experiments in which the mitochondria were fractionated to determine bound \(\text{Si(OH)}_4\) were limited in their resolution, owing to the removal of significant amounts of \(^{31}\text{Si(OH)}_4\) on dilution of the mitochondria (Table 4). This behaviour is compatible with the finding of a proportionality between overall uptake and external concentration (Fig. 3), consistent with binding of low affinity on the one hand and of simple diffusion into the matrix on the other.

Although mersalyl and \(N\)-ethylmaleimide, the inhibitors of \(\text{Si(OH)}_4\) uptake, showed characteristics (Fig. 5) similar to those observed for inhibition of the phosphate carrier, the variation found within a single experiment (i.e. inhibition by mersalyl but not by \(N\)-ethylmaleimide) argues against a role for the transporter. The variability noted both within a series and between experiments carried out at different times can best be explained on the basis of different polymeric forms of \(\text{Si(OH)}_4\) being present in differing proportions from incubation medium to another. Such polymers may result from the neutralization of the media owing to local acidity as HCl is added (see the Experimental section). Considering that the total \(\text{Si(OH)}_4\) uptake represents approx. 0.1% of the \(\text{Si(OH)}_4\) available, microscopic variations of this sort are quite conceivable. However, if this explanation is correct, doubts are raised about the nature of the \(\text{Si(OH)}_4\) being studied. The weight of evidence suggests that the inhibitors affect the bound component rather than the diffusible component, since (i) they are as effective at 2 min as at later times, (ii) mersalyl was able to displace \(\text{Si(OH)}_4\) previously taken up (discussed above), and (iii) mersalyl caused a greater degree of inhibition at high osmolality than at low osmolality, causing the bound component to be decreased to an extent greater than determined for the diffusible component.

Thus the proposal of microscopic variability may be relevant only to the bound component; the same, presumably monomeric, species may be responsible for permeation in all experiments.

To summarize, the uptake of \(\text{Si(OH)}_4\) into mitochondria appears to proceed by two mechanisms: the permeation of \(\text{Si(OH)}_4\) into the matrix appears to be due to a slow, simple diffusion, being independent of energy provision and probably lacking a specific
carrier in the mitochondrial inner membrane; however, under all conditions examined, the greater portion of the total uptake is not free in solution, but is bound, probably to sites external to the inner membrane. This behaviour is in marked contrast with that seen in intact diatoms, which show an energy-dependent, high-affinity transport of Si(OH)₄, with the ability to maintain a concentration gradient 30-fold between the cytosol and the suspending medium (Azam et al., 1974). Such a profound difference may indicate their respective requirements in vivo: whereas diatoms depend absolutely on silicon, the role of mitochondria in silicon metabolism is suggested only by circumstantial evidence and may be relatively minor.

The relationship between these findings and the uptake of Si(OH)₄ by mitochondria observed experimentally in whole cells in vitro and in vivo is now assessed. The simple detection of silicon in mitochondrial fractions of whole cells does not necessarily imply permeation of silicon into the matrix space even when steps are taken to correct for surface adsorption (cf. Mehard et al., 1974). However, in other instances (Mehard & Volcani, 1976; Carlisle, 1976), silicon has been detected in the matrix compartment, and in association with granular material (Mehard & Volcani, 1976). The observation of silicon-containing granules is particularly intriguing, since it implies an asymmetric distribution of silicon between the matrix and the cytosol, a feature notably lacking in the present study. Even recognizing the ability of diatoms to concentrate Si(OH)₄ in the cytosol (Azam et al., 1974) does not explain granule formation within the mitochondrion, unless sites within the matrix act as centres for nucleation. It is known that mitochondrial silicon-containing granules can be produced by the injection of silica gel into rats (Policard et al., 1961), possibly a result of polymerized Si(OH)₄, and in the present study it was shown that polymerized Si(OH)₄ was avidly bound by disrupted mitochondria (Fig. 2). However, it is doubtful whether high concentrations of Si(OH)₄ are normally encountered in vivo, particularly in higher animals, where the concentration of silicon in the blood does not exceed the equivalent of 0.2 mm-Si(OH)₄ (see the introduction). Clearly, the present work does not offer an explanation of how intramitochondrial silicon granules might be formed, and the nature and physiological relevance of the mitochondrial silicon stores must await further investigation.

We thank Miss Darlene Lum for her excellent technical assistance, and Dr. George Somero for the use of his recording spectrophotometer. This work was supported by grant GM-08229-17 from the National Institutes of Health.

References
Carman, P. C. (1940) Trans. Faraday Soc. 36, 964-973
Heinen, W. (1967) Arch. Biochem. Biophys. 120, 93-100

1978