Rapid Papers

(Pages 271–320)
The Involvement of the Bridging Imidazolate in the Catalytic Mechanism of Action of Bovine Superoxide Dismutase

By MICHAEL E. McADAM, E. MARTIN FIELDEN and FRANCOIS LAVELLE*
Division of Physics, Institute of Cancer Research, Clifton Avenue, Sutton, Surrey SM2 5PX, U.K.

and LILIA CALABRESE and DINO COCCO
Institute of Biological Chemistry and Applied Biochemistry, University of Rome, Rome, Italy

and GUISEPPE ROTILIO
Institute of Biological Chemistry, University of Camerino, Camerino, Italy, and CNR Centre for Molecular Biology, Rome, Italy

(Received 29 June 1977)

The pulse-radiolysis method has been used to study the catalytic mechanism of \(\text{O}_2^- \) dismutation by the Co(II)-substituted bovine erythrocuprein (superoxide dismutase, EC 1.15.1.1). Catalysis is accompanied by spectral changes that may be interpreted in terms of rapid protonation and deprotonation of the Cu-facing nitrogen atom of the imidazolate that bridges the Cu(II) and the Co(II) [or Zn(II)] in the oxidized enzyme. This rapid change permits the possibility that the imidazole is a proton donor in the catalytic reduction of \(\text{O}_2^- \).

The catalytic mechanism of the (Cu,Zn)- (copper-and-zinc-containing) superoxide dismutase (EC 1.15.1.1) has been shown to involve alternate oxidation and reduction of the copper by \(\text{O}_2^- \) (Klug-Roth et al., 1973; Fielden et al., 1974):

\[
\text{Cu(II)-enzyme} + \text{O}_2^- \xrightarrow{k_{+1}} \text{Cu(I)-enzyme} + \text{O}_2 \quad (1)
\]

\[
\text{Cu(I)-enzyme} + \text{O}_2^- + 2\text{H}^+ \xrightarrow{k_{+2}} \text{Cu(II)-enzyme} + \text{H}_2\text{O}_2 \quad (2)
\]

In reaction (2), \(\text{O}_2^- \) is directly involved in proton transfer as well as electron transfer; this is not so in reaction (1). By analogy with the known pH-dependence of the uncatalysed dismutation of \(\text{O}_2^- \), Fee & Ward (1976) suggested that the transition state of the enzyme-catalysed reduction (2) must contain at least one proton. The high value of the catalytic rate constant \((k_{+2} = k_{+1}) \) (Fielden et al., 1974) and its pH-independence (pH 5-10) (Rotilio et al., 1972) preclude hydronium ions from the bulk of the solvent as a proton source (Fee & DiCorleto, 1973). Hodgson & Fridovich (1975) found that enzyme activity, as measured by its ability to inhibit \(\text{O}_2^- \)-mediated reduction of cytochrome c, was the same in \(\text{H}_2\text{O} \) as in \(\text{H}_2\text{O}_2 \), and concluded that proton transfer is not rate-limiting. If a proton is involved in the transition state then it must come from a source.

* Permanent address: Service de Biochimie-Physique, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.

That is near to the active site and is capable of fast proton transfer.

Fee & Ward (1976) suggested that reaction (2) proceeds through a cupric-peroxide complex and that protons are donated from water molecules in the region of the superoxide bound to the copper. An alternative scheme involves the acid form of the bridging imidazolate of the histidine-61 residue (Richardson et al., 1975) as the proton source (Hodgson & Fridovich, 1975; Rotilio et al., 1977). According to the latter hypothesis, reduction of the Cu(II) by \(\text{O}_2^- \) leads to (or is accompanied by) release of the bridging imidazolate and protonation of the formerly Cu-bound nitrogen atom; re-formation of the Cu–N bond during oxidation of the Cu(I) form of the enzyme releases the bound proton, which participates directly in the transition state leading to reduction of \(\text{O}_2^- \):

\[
\begin{align*}
\text{Cu(II)-OH}_2 & \xrightarrow{k_{+2}} \text{Cu(I)-OH}_2 \\
\text{Cu(II)-NH} & \xrightarrow{k_{+2}} \text{Cu(I)-NH}
\end{align*}
\]

In the present paper we show that protonation and deprotonation of the bridging imidazolate in the Co(II)-substituted dismutase occurs simultaneously with the catalytic dismutation.
Materials and Methods

(Cu,Zn)-superoxide dismutase was isolated from bovine erythrocytes by the method of Mc Cord & Fridovich (1969) and the Co-substituted enzyme was prepared as described previously (Calabrese et al., 1972). Enzyme concentrations were calculated assuming $\varepsilon_{500} = 300$ litre\cdotmol$^{-1}$$\cdotcm^{-1}$. The cobalt content was determined by parallel visible-absorbance measurements and atomic-absorption spectroscopy. These measurements gave an $\varepsilon_{497.5} (\lambda_{\text{max}})$ of 450 litre\cdotmol$^{-1}$$\cdotcm^{-1}$ for the protein-bound Co (expressed per mol of Co) having allowed for the absorbance of the protein-bound Cu at this wavelength (e = 195 litre\cdotmol$^{-1}$$\cdotcm^{-1}$, expressed per mol of protein) by comparison with the spectrum of the (Cu,Zn)-superoxide dismutase.

The use of the pulse-radiolysis method to measure rate constants and to determine absorption changes occurring during catalysis was described previously (Fielden et al., 1974). Experiments were performed at room temperature (approx. 25°C) in either aerated or oxygenated buffer (2mm-sodium pyrophosphate/100µM-EDTA) containing 0.1 M-ethanol and adjusted (with H$_2$SO$_4$) to pH9.

Results and Discussion

Cobalt (II) can be partially substituted for zinc without markedly affecting the structure and properties of Cu-superoxide dismutase (Calabrese et al., 1972; Rotilio et al., 1973). The turnover rate constants determined in the present study (Table 1) show that catalytic activity is fully retained in the Co-substituted enzyme. The optical spectrum associated with the Co(II) is sensitive to the state of the nearby copper site (Calabrese et al., 1976). In particular, the spectrum is identical in the Cu-free protein and in the Cu(I),Co(II)-protein obtained by reduction with H$_2$O$_2$ or K$_4$Fe(CN)$_6$. Redox titration has demonstrated the uptake of a proton during the reduction of each Cu(II) centre in the (Cu,Zn)-enzyme (Fee & DiCorleto, 1973), and the changes observed in the Co(II) spectrum of the substituted enzyme are consistent with the breaking of the Cu(II)–imidazole bond and protonation of the formerly Cu(II)-bound nitrogen atom (reaction 3) (Rotilio et al., 1977).

To determine whether or not the above alteration of the Co(II) environment occurs during catalysis, we recorded the spectral changes seen under turnover conditions (see the legend to Table 1) over a time

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Turnover rate constant (k) (m$^{-1}$$\cdots^{-1}$)</th>
<th>Initial rate constants (k_ox) (m$^{-1}$$\cdots^{-1}$)*</th>
<th>Initial-rate conditions</th>
<th>Turnover conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu,Zn (B)</td>
<td>3.15 ± 0.14 (4)</td>
<td>1.67 (ox)</td>
<td>2.12 (ox)</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.90 (red)</td>
<td>2.13 (red)</td>
<td>0.89</td>
</tr>
<tr>
<td>Cu,Zn (C)</td>
<td>3.14 ± 0.13 (5)</td>
<td>1.80 (ox)</td>
<td>2.28 (ox)</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.46 (red)</td>
<td>2.88 (red)</td>
<td>0.85</td>
</tr>
<tr>
<td>Cu,Co (B)</td>
<td>3.21 ± 0.08 (3)</td>
<td>2.39 (ox)</td>
<td>2.19 (ox)</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>2.23 (red)</td>
<td>1.93 (red)</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Cu,Co (C)</td>
<td>3.25 ± 0.14 (5)</td>
<td>2.04 (ox)</td>
<td>1.86 (ox)</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.31 (red)</td>
<td>2.19 (red)</td>
<td>1.05</td>
</tr>
</tbody>
</table>

*Deviations are quoted as standard deviations from the mean.
†ΔA$_{601}$/ΔA$_{680}$ is given for the Co-substituted enzymes where the turnover rate constants for both the Cu,Zn- and Cu,Co-enzymes are given.

Table 1. Rate constants and relative intensities of spectral changes at 601 nm and 680 nm for the (Cu,Zn)- and the (Cu,Co)-superoxide dismutases of two of the batches (B and C) of enzyme
Fig. 1. Optical spectra of (Cu, Co)-superoxide dismutase
Enzyme (610 µM) containing 0.93 g-atom of Co/mol (batch A) in sodium pyrophosphate buffer (20 mM), pH 8.9 (upper curve), was reduced by approx. 30% by the addition of 140 µM-H₂O₂. The resulting spectrum (lower curve) was recorded immediately, and neither inactivation nor re-oxidation of the enzyme occurred during this period. The light-path was 1 cm. The closed circles (●) represent the absorbances observed under turnover conditions (see the legend to Table 1) during pulse radiolysis of a solution of the oxidized (Cu, Co)-superoxide dismutase from the same enzyme preparation. For comparison, these absorbances have been corrected because different enzyme concentrations were used in the two sets of experiments.

Fig. 2. Difference spectrum for (Cu, Co)-superoxide dismutase: the effect of going from oxidized enzyme to enzyme at turnover
The continuous line (-----) was calculated from the difference between the spectra of the oxidized and the partially reduced (H₂O₂) enzyme (batch A) shown in Fig. 1. The points refer to absorbance changes observed under turnover conditions (see the legend to Table 1) during pulse radiolysis of solutions of the oxidized enzyme. Batch A (●), 0.93 g-atom of Co/mol; batch B (□), 1.13 g-atom of Co/mol; batch C (○), 0.53 g-atom of Co/mol; batch D (△), 0.99 g-atom of Co/mol. The absorbance changes have been expressed relative to those observed at 680 nm for a given enzyme sample. The results obtained under turnover conditions for batch A can be directly compared with the continuous line. Because of the different Co content of the other batches of enzyme, corrections have been applied to the data before plotting so that they too may be compared with the continuous line. The broken line (-----) represents the best-fit line obtained for analogous pulse-radiolysis experiments with (Cu, Zn)-superoxide dismutase, and is in agreement with predictions from simple spectrophotometric experiments (similar to those of Fig. 1).

range during which there was neither reduction nor inactivation by H₂O₂. The observed changes were in close agreement with those expected if the enzyme alternated between the oxidized state [Cu(II)−Co(II)] and a reduced state [Cu(I),Co(II)] identical with that produced by reduction with H₂O₂ (Fig. 1). The identity of the spectral changes is more clearly illustrated by the difference spectrum in Fig. 2. Analogous results were obtained when the H₂O₂-reduced enzyme was present initially. If the environment of only the Cu was affected during catalysis then the observed changes would be expected to be similar to those seen for the (Cu, Zn)-superoxide dismutase (-----, Fig. 2); the difference spectrum clearly indicates that the data are compatible with a concommitant change in the Co(II) and the Cu environments.

To establish conclusively that the observed spectral changes occur at the same rate as the catalytic step, as determined by the decrease in absorbance [starting with Cu(II),Oo(II)enzyme] or by the increase in absorbance [starting with the Cu(I),Co(II)enzyme] of the visible absorption bands, parallel measurements were made at 601 nm, where the difference spectrum has a maximum, and at 680 nm, where the Cu band has a broad maximum. Under conditions where initial rates were observed (i.e. with an excess of enzyme over substrate), the second-order rate constant characterizing the ΔA₆₀₁ (k₆₀₁) was the same as that characterizing ΔA₆₈₀ (k₆₈₀) (Table 1). The ratio of the overall change at the two wavelengths
(ΔA<sub>601/ΔA₆₈₀) was higher for the (Cu,Co)-superoxide dismutase than for the (Cu,Zn)-enzyme. This indicates that the Co(II) chromophore is involved in the observed change. Moreover, for the Co(II)-containing enzyme, ΔA<sub>601/ΔA₆₈₀ is the same as that found under turnover conditions, implying that the change in the Co(II) environment is indeed occurring at the same time as the catalytic dismutation. The results imply also that, in the Co(II)-substituted protein, the Cu(II),Co(II) centres and the remaining Cu(II),Zn(II) centres are equally reactive towards substrate, as would be expected from the known lack of effect on activity of Co(II) substitution (Table 1).

The results indicate that a concomitant change in the Co and Cu environments occurs during catalysis, and that the environment of the Co(II) in the Cu(I)-Co(II) form of the enzyme is identical with that obtained by reduction. In view of the evidence (discussed above) that protonation of the Cu-facing nitrogen atom of the bridging imidazolate is the most likely cause of this type of spectral change, the results support the hypothesis that protonation and deprotonation of this bridging ligand occur at the same rate as reduction or oxidation of the Cu centre. Of course, this does not prove that the proton attached to the imidazolate nitrogen atom in the [Cu(I),Co(II)]-enzyme is indeed responsible for protonating the precursor of HO₂-. However, it is clear that the transfer of that proton and the accompanying conformational changes are sufficiently rapid at least, to be considered, as catalytically important. It can be suggested that re-oxidation of the [Cu(I),Co(II)]-enzyme involves three simultaneous processes: (i) electron transfer from the Cu(I) to O₂••; (ii) proton transfer from the imidazole to the O₂••; (iii) formation of a Cu–N bond (i.e. the imidazole-bound proton participates directly in the transition state leading to HO₂−).

The catalytic oxidation of O₂•• (step 1) involves also rapid protonation of the imidazolate, although in this case the product is O₂−, and there is no need to speculate about the juxtaposition of substrate and the bridging imidazolate. Nevertheless the rate of this reaction shows clearly that there must be other proton sources (presumably solvent molecules) able to react extremely rapidly. The pK of the pyrrole hydrogen in the simple Co(Im)₂²⁺ (Im = imidazolate) is about 12.5 (Sundberg & Martin, 1974) and the first pK of H₂O₂ is about 11.6 (Handbook of Chemistry and Physics, 1970). Since the nitrogen of the bridging imidazolate protonates very rapidly during the reduction of the [Cu(II),Co(II)]-enzyme (step 1), it is likely that in the re-oxidation (step 2) there is a proton source available close to the active site that could rapidly transfer a second proton to convert HO₂− into H₂O₂.

Conclusion

The imidazole-bound proton seems the most likely proton to be involved in the transition state leading to the formation of HO₂−. However, it is clear that there are solvent molecules in the region of the active site available to participate in equally rapid proton transfer. Even if these water molecules are not involved in the first step of the reduction of O₂••, they may rapidly protonate HO₂− to give H₂O₂. In view of the complete retention of activity when Co(II) is partially substituted for Zn(II) in the (Cu,Zn)-superoxide dismutase, it can be assumed that the above arguments apply equally well to the parent enzyme.

This work was supported by NATO Research Grant no. 878.

References

1977