The Effects of Inhibition of Fatty Acid Oxidation in Suckling Newborn Rats

By JEAN-PAUL PÉGORIER, PASCAL FERRÉ and JEAN GIRARD*
Laboratoire de Physiologie du Développement, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France

(Received 13 June 1977)

Inhibition of fatty acid oxidation with pent-4-enoate in suckling newborn rats caused a fall in blood [glucose] and blood [ketone bodies] and inhibition of gluconeogenesis from lactate. Glucose utilization was not increased in newborn rats injected with pent-4-enoate. Active fatty acid oxidation appears to be essential to support gluconeogenesis and to maintain normal blood [glucose] in suckling newborn rats.

Experimental design
Each litter of 16h-old rats was divided into two groups. One was injected subcutaneously with sodium pent-4-enoate (pH 7.4) at a dose of 2mg/g body wt. and the other was injected with the same volume (50μl) of 0.9% NaCl. The pups were then immediately placed in a Humidicrib (Jouan S.A., Paris, France) in which the temperature was maintained at 37°C and the relative humidity at 70%.

In the experiments in which blood metabolites and hormones were determined, the newborn rats were killed 2.5h after injections of pent-4-enoate or NaCl. The maximum effects of pent-4-enoate were observed at this time.

In the gluconeogenesis studies, the newborn rats were injected intraperitoneally with labelled precursor (1μCi of [U-14C]lactate or 1μCi of [U-14C]-glycerol) 2h after pent-4-enoate or NaCl injections, placed again in the Humidicrib and killed 30 min after injection of the labelled precursor.

In the glucose-tolerance studies, the newborn rats were injected intraperitoneally with D-glucose (2mg/g body wt.) 30min after pent-4-enoate or NaCl injections, placed again in the Humidicrib and killed 30, 60, 120 or 180 min after injection of glucose.

Blood samples for metabolite and hormone assays were collected as described previously (Girard et al., 1973, 1975).

Measurement of gluconeogenesis rates in vivo from 14C-labelled substrates
The technique used and the method for calculation of rate of gluconeogenesis in vivo were as described previously (Girard et al., 1975, 1976; Ferré et al., 1977a); lactate and glycerol spaces equal to the total body water were used, i.e. 80ml/100g body wt., and a glucose space equal to extracellular body water was used, i.e. 60ml/100g body wt. The separation of

Experimental
Animals
Rat pups of an albino Wistar strain were born between 15:00 and 18:00h on day 22 of gestation. They were left with the mother for 16h after delivery in a room in which external temperature was 22°C. The pups began to suckle between 1 and 2h after birth.

* To whom reprint requests should be addressed.

Vol. 166
labelled glucose, lactate and charged compounds was performed by ion-exchange chromatography (Kreisberg et al., 1972). Labelled glucose was separated from labelled glycerol as described by Pilkis et al. (1976). A portion of the Ba(OH)₂/ZnSO₄ filtrate was treated with glycerol kinase to convert the remaining [U-¹⁴C]glycerol into [¹⁴C]glycerol phosphate. After neutralization, the samples were treated with Dowex 1 (X8) and Dowex 50 (X8) ion-exchange resins. The resin treatment separated labelled glycerol phosphate from labelled glucose.

Assays

Enzymic assays were performed for glucose, lactate, pyruvate, glycerol, alanine, acetocetate and 3-hydroxybutyrate as previously described (Girard et al., 1973). Plasma non-esterified fatty acids were measured by the radioactive nickel method of Ho (1970).

Hormones

Plasma insulin and glucagon were determined by radioimmunoassay as previously described (Girard et al., 1973, 1975). Glucagon was assayed by using 30 K antiserum (Faloona & Unger, 1974), which is considered to be specific for pancreatic glucagon.

Statistics

Results are expressed as means ± s.e.m.; significant differences were determined by using the Wilcoxon rank-order test (Wilcoxon, 1947).

Special chemicals

Enzyme and coenzymes were from Boehringer Corp. (Paris), 75006 Paris, France. Pent-4-enoic acid was purchased from K & K Laboratories, Plainview, NY, U.S.A. [U-¹⁴C]Lactate and [U-¹⁴C]glycerol were from The Radiochemical Centre, Amersham, Bucks., U.K.

Results

Blood metabolites

The injection of pent-4-enoate (2mg/g subcutaneously) in 16h-old suckling rats resulted in a marked decrease in blood [acetocetate] and [3-hydroxybutyrate] of 0.29mm and 2.38mm respectively, and in a significant increase in plasma [non-esterified fatty acids] of 0.2mm after 2.5h (Table 1). This suggests that pent-4-enoate strongly inhibited fatty acid oxidation in suckling newborn rats.

The injection of pent-4-enoate induced a dramatic fall in blood [glucose] of 3.7mm after 2.5h (Table 1).

<table>
<thead>
<tr>
<th>Metabolite conc. (µmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood [glucose]</td>
</tr>
<tr>
<td>Blood [pyruvate]</td>
</tr>
<tr>
<td>Blood [lactate]</td>
</tr>
<tr>
<td>Blood [glycerol]</td>
</tr>
<tr>
<td>Plasma [non-esterified fatty acid]</td>
</tr>
<tr>
<td>Blood [acetocetate]</td>
</tr>
<tr>
<td>Blood [3-hydroxybutyrate]</td>
</tr>
<tr>
<td>Total [ketone bodies]</td>
</tr>
<tr>
<td>Blood [alanine]</td>
</tr>
</tbody>
</table>

Table 1. Blood and plasma metabolite concentrations after injection of NaCl or pent-4-enoate into suckling newborn rats

Suckling 16h-old rats were injected subcutaneously with NaCl or pent-4-enoate. The blood was collected 2.5h later. Values are means ± s.e.m. (n=12). Significant differences were determined by using the Wilcoxon rank test. *P<0.01 when comparing animals injected with pent-4-enoate with animals injected with NaCl. For other details see the text.

It also produced an increase in blood [lactate] of 0.50mm and a decrease in blood [glycerol] of 0.13mm (Table 1). The blood [pyruvate] and [alanine] did not change significantly.

Rate of gluconeogenesis in vivo

The rate of conversion of [¹⁴C]lactate into glucose decreased from 11±1µmol/h per 100 g body wt. in NaCl-injected newborn rats (n=6) to 1.8±0.1 µmol/h per 100 g body wt. in newborn rats injected with pent-4-enoate (n=6) (P<0.01). There was no significant difference in the rate of conversion of [¹⁴C]glycerol into glucose between the NaCl-injected newborn animals [3.5 µmol/h per 100 g body wt. (n=6)] and the newborn rats injected with pent-4-enoate [4.4±0.7 µmol/h per 100 g body wt. (n=6)].

Glucose-tolerance test

In order to estimate whether glucose utilization was altered by pent-4-enoate, intraperitoneal glucose tolerance was tested. The results are shown in Fig. 1. A significant decrease in blood [glucose] (P<0.01) was already observed 30min after pent-4-enoate injection, before the glucose-tolerance test was started. Although the peak in glycaemia was higher in NaCl-injected newborn rats, the disappearance rate was identical, and blood [glucose] returned to initial values 3h after glucose injection.

The rate of glucose disappearance calculated from the slope of the semi-logarithmic plot of blood glucose expressed as %/min was 0.54 in NaCl-
injected controls and 0.61 in pent-4-enoate-injected rats. No glucose intolerance was demonstrated by this technique after pent-4-enoate injection.

Plasma insulin and glucagon

Plasma insulin decreased from 18±1 μi.u./ml in NaCl-injected controls to 10±1 μi.u./ml (P<0.01), in association with hypoglycaemia, in the newborn rat injected with pent-4-enoate. A significant increase in plasma glucagon was also observed: 906±43 pg/ml for the NaCl-injected controls versus 1907±189 pg/ml for the newborn rats injected with pent-4-enoate (P<0.01). Each value was the mean of six determinations.

Discussion

In the present study, pent-4-enoate was used to examine the metabolic effects of a blockage of fatty acid oxidation in suckling newborn rats. This compound has been reported to inhibit in vitro the oxidation of long-chain fatty acids in several tissues, particularly the liver [see Sherratt & Osmundsen (1976) for a review]. In vivo, pent-4-enoate raised the plasma [non-esterified fatty acid] and caused marked ketosis in starved rats (Senior & Sherratt, 1969). In suckling newborn rats, pent-4-enoate produced a fall in blood [ketone bodies] and a rise in plasma [non-esterified fatty acid], which suggests inhibition of fatty acid oxidation. In adult rats, ketosis has been attributed to greater inhibition of the peripheral utilization of ketone bodies than their production by the liver. The decrease in the rate of ketone-body utilization could be secondary to hypothermia produced by pent-4-enoate injection into adult rat maintained at an environmental temperature less than 26°C (Marley & Sherratt, 1973). This interpretation did not apply to suckling newborn rats maintained at an ambient temperature of 37°C.

The development of profound hypoglycaemia in suckling rats occurred in spite of the high plasma [non-esterified fatty acid], but concomitantly with a fall in blood [ketone bodies]. A possible increase in glucose utilization, secondary to the fall in blood [ketone bodies], can be ruled out, since (1) the rate of glucose disappearance after an intraperitoneal glucose injection was not increased by pent-4-enoate and (2) the fall in plasma [insulin] that occurred in newborn rats injected with pent-4-enoate would contribute to a decrease rather than an increase in glucose utilization.

The hypoglycaemic effect of pent-4-enoate in suckling newborn rats resulted from inhibition of gluconeogenesis at a site between pyruvate and glyceraldehyde 3-phosphate, since it decreased the rate of gluconeogenesis from lactate by 84% but not that from glycerol in vivo. This is in agreement with previous observations showing that pent-4-enoate inhibited gluconeogenesis from pyruvate, alanine and aspartate but not from glycerol or fructose in isolated perfused rat liver (Ruderman et al., 1970; Williamson et al., 1970). The 30% rise in blood [lactate] when gluconeogenesis is inhibited suggests that lactate is the most important substrate for gluconeogenesis in newborn rats, as postulated previously (Girard et al., 1975; Ferré et al., 1977a). Glycerol did not appear to make a major contribution to blood-glucose regulation in suckling newborn rats, since hypoglycaemia occurred even though pent-4-enoate did not inhibit gluconeogenesis from glycerol. Moreover, the fall in blood [glycerol] after pent-4-enoate injection suggests increased utilization of glycerol for gluconeogenesis. This can explain why the rate of gluconeogenesis from glycerol is not decreased by pent-4-enoate despite the 2-fold decrease in glycerol-pool size. The absence of a rise in blood [alanine] when gluconeogenesis was inhibited suggests again that alanine is not a quantitatively important substrate for gluconeogenesis in suckling newborn rats (see also Ferré et al., 1977a).

Plasma insulin decreased and plasma glucagon increased during pent-4-enoate-induced hypoglycaemia. Hypoglycaemia of the same magnitude was observed after inhibition of gluconeogenesis by 3-mercaptopicolinate and was associated with a decrease in plasma [insulin] but no change in plasma [glucagon] (Ferré et al., 1977a). In vitro, ketone bodies have been shown to inhibit glucagon
release from neonatal rat pancreas (Marliss et al., 1973). In the present studies, the dramatic fall in blood [ketone bodies] induced by pent-4-enoate might have contributed to the increase in plasma [glucagon].

We are indebted to Dr. R. Assan and Dr. A. Kervran for kindly performing the insulin and glucagon assays. These studies were supported in part by a grant (74-7-0020) from the Délégation Générale à la Recherche Scientifique et Technique. We thank Dr. D. H. Williamson for the review and criticism of this manuscript.

References