The Transport of Vitamin D in the Serum of Primates

By ROGER BOUILLON, HUGO VAN BAELEN and PIETER DE MOOR
Laboratorium voor Experimentele Geneeskunde, Rega Instituut, Katholieke Universiteit te Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium

(Received 25 March 1976)

'Transcalciferin' (the serum transport protein for cholecalciferol and related substances) of two New World monkeys, Cebus apella and Cebus albifrons, was found to be immunologically identical with the transcalciferin of other monkeys and partially with that of man. In contrast with the a-globulin mobility of the transcalciferin of other primates, the transcalciferin of cebus monkey has the electrophoretic mobility of albumin. Most of the serum 25-hydroxycholecalciferol was precipitable with isolated monospecific anti-(human transcalciferin) y-globulins but not with anti-(human albumin) y-globulins. These results indicate that the transport of 25-hydroxycholecalciferol in the cebus monkey is not due to albumin itself but to transcalciferin with the electrophoretic mobility of albumin. Similar variants of transcalciferin also exist in man.

Cholecalciferol and 25-hydroxycholecalciferol [9,10-seco-cholesta-5,7,10(19)-triene-3,25-diol] present in human serum are bound to plasma proteins, mainly a-globulins. This was first demonstrated (Thomas et al., 1959) by measuring the antirachitic activity of serum fractions and later confirmed by using labelled cholecalciferol (Avioli et al., 1968) or labelled 25-hydroxycholecalciferol (Haddad & Chyu, 1971). This serum transport protein for ergocalciferol, cholecalciferol and their many hydroxylated derivatives has been isolated from human serum (Bouillon et al., 1976b); we tentatively term it 'transcalciferin', by analogy with other serum binding proteins (transcortin, transferrin and transcobalamin). During a comparative study of 25-hydroxycholecalciferol-binding protein in 72 mammalian species (Hay & Watson, 1976), labelled 25-hydroxycholecalciferol was bound to a protein with a-globulin mobility on polyacrylamide-gel electrophoresis in all but seven species. In these seven exceptions, which included three species of New World monkeys (Cebus albifrons, Cebus capucinus and Cebus apella), 25-hydroxycholecalciferol was bound to a protein with the electrophoretic mobility of albumin. The same phenomenon was previously described for Cebus albifrons (Edelstein et al., 1973). Subsequently albumin itself was reported to be responsible for the transport of 25-hydroxycholecalciferol in these New World cebus monkeys (Hay, 1975).

Because this phenomenon would argue in favour of the superfluous nature of transcalciferin, we re-investigated the nature of the transport of 25-hydroxycholecalciferol in the cebus monkey.

Experimental

Animals

Serum from different species of monkeys were obtained from the Zoological Institute of Antwerp (Belgium).

Materials

25-Hydroxy[26,27-3H]cholecalciferol (specific radioactivity 9.2 Ci/mmol) was purchased from The Radiochemical Centre, Amersham, Bucks., U.K. Agarose (Indubiose A 37) was obtained from Industrie Biologique Française, Gennevilliers, France. Monospecific antiserum against human serum albumin was purchased from Dako, Hellerup, Denmark.

Antiserum production

Antiserum to human transcalciferin was raised in rabbits as described by Bouillon et al. (1976b).

Immunodiffusion

Agarose (1%, w/v) prepared in diethylbarbituric acid buffer (0.023M, pH 8.6) was used for double immunodiffusion (Ouchterlony, 1949) and for the following electrophoresis and immunoelectrophoresis studies. Radial immunodiffusion was performed as previously described (Van Baelen & De Moor, 1974) by using either 0.3 ml of monospecific anti-(human transcalciferin) or 0.05 ml of monospecific anti-(human albumin) antiserum per 10 ml of agarose.
Electrophoresis

Agarose-gel electrophoresis of serum (5 μl), previously incubated with 25-hydroxy[3H]cholecalciferol (10 nCi), was performed at 4°C during 3 h at 15 V/cm. Thereafter half of the slide was stained with Amido Black and the other half cut into 0.25 cm pieces and counted for radioactivity for 10 min in 10 ml of a toluene-based scintillator.

Tandem crossed immunoelectrophoresis

Serum samples from three different species (man, and two species of monkey, Cebus apella and Aotus trivirgatus) were applied in three consecutive wells. After 1 h, the wells were closed with a drop of agarose and the first electrophoretic run (3 h, 15 V/cm, 4°C) was started. The second immunoelectrophoretic run was done at 4°C at 4 V/cm for 20 h. The immunogel (10 ml) contained 0.4 ml of a monospecific rabbit anti-(pure human transcalciferin) antiserum (Bouillon et al., 1976b).

Sucrose-gradient ultracentrifugation

Ultracentrifugation of serum from man or Cebus apella was performed in a 5–20% (w/v) sucrose gradient (4.2 ml prepared in sodium phosphate buffer, \(I = 0.2, \) pH 7.4) at 240 000 g for 15 h at 4°C in a swing-out bucket of a MSE Superspeed 65 ultracentrifuge. The applied serum sample (0.2 ml) was diluted with the same buffer, either twofold for radial-immunodiffusion studies or 20-fold for radioactivity measurements, after previous incubation of the serum with a trace amount of 25-hydroxy[3H]cholecalciferol and 14C-labelled bovine serum albumin, as prepared by Rice & Means (1971).

Immunoprecipitation

Immunoprecipitation of 25-hydroxy[3H]cholecalciferol-labelled serum was performed with γ-globulins, precipitated from whole rabbit antiserum with (NH₄)₂SO₄ (20%, w/v) and further purified by Sephadex G-75 gel filtration on a 4 cm × 20 cm column, eluted with phosphate buffer (0.05 M, pH 7.4). The final incubation mixture of 1 ml consisted of serum (diluted 500-fold) from man or Cebus apella, 10 nCi of 25-hydroxy[3H]cholecalciferol and serial dilution of γ-globulins (from 4 to 0.04 mg/ml). After 20 h incubation at 4°C the tubes were centrifuged (20 000 g for 20 min) and 0.5 ml of the supernatant was counted for radioactivity for 10 min.

Measurements of radioactivity

Radioactivity was measured in a Packard model 2450 spectrometer in either a toluene scintillator (Bouillon et al., 1976a) or Insta-Gel (Packard Instruments, Downers Grove, IL, U.S.A.).
EXPLANATION OF PLATE I
Ouchterlony immunodiffusion

(a) Presence of transcalciferin in all primates. The central well contains 5μl of a monospecific rabbit anti-(human transcalciferin) antiserum. The outer wells contain 5μl of serum from: 1, man; 2, chimpanzee (Pan); 3, Cercopithecus aethiops; 4, Ateles; 5, Aotus trivirgatus; 6, Cebus apella. (b) Specificity of the antisera against transcalciferin and albumin. (i) The outer wells contain 5μl of: 1, serum from man; 2, human serum albumin (30mg/ml); 3, pure human transcalciferin (3mg/ml); 4, serum from Cebus albifrons. The central well contains 5μl of a monospecific rabbit anti-(human albumin) serum. (ii) The central well contains 5μl of a monospecific rabbit anti-(human transcalciferin) antiserum. The outer wells contain the same samples as in (i).
Immunoelectrophoresis (a) and tandem crossed immunoelectrophoresis (b) of serum from man, Cebus apella and Aotus trivirgatus

Serum from man (5 μl), Cebus apella (7 μl) and Aotus trivirgatus (5 μl) was applied in three consecutive wells with a distance between centres of 1 cm. The immunogel in the tandem crossed electrophoresis (a) and the trough in the immunoelectrophoresis (b) contain monospecific anti-(human transcalciferin) antiserum. The distance between the first and the second peak of immunoprecipitation is 1.4 cm, and between the first and the third, 3.05 cm. For details, see the text.
VITAMIN D TRANSPORT IN PRIMATES

465

Results

1. Serum from Cebus apella contains a protein that is immunologically related to the transcalciferin of other primates

On Ouchterlony immunodiffusion against a monospecific rabbit anti-(human transcalciferin) antiserum a complete immunological identity between transcalciferin from man and chimpanzee (Pan) can be demonstrated (Plate 1a). Since spur formation was observed, human transcalciferin must share common antigenic determinants with the corresponding protein of other monkeys, both from the Old World (Cercopithecus aethiops and Macaca mulatta) and from the New World (Cebus apella, Cebus albifrons, Ateles and Aotus trivirgatus).

The monospecificity of our anti-(human transcalciferin) antiserum has previously been demonstrated (Bouillon et al., 1976b) by the presence of a single precipitation line on immunoelctrophoresis of human serum. The absence of cross reaction either between human serum albumin and anti-(human transcalciferin) antiserum or between human transcalciferin and anti-(human albumin) antiserum is further demonstrated in Plate 1(b).

2. The serum transport protein for 25-hydroxycholecalciferol in the Cebus monkey is not albumin but transcalciferin with an increased electrophoretic mobility

(a) 25-Hydroxy[3H]cholecalciferol is precipitable by anti-(human transcalciferin) γ-globulins. γ-Globulins isolated from a monospecific anti-(human transcalciferin) antiserum were able to precipitate 73% of the 25-hydroxy[3H]cholecalciferol added to diluted serum of Cebus apella or Cebus albifrons, whereas γ-globulins against human serum albumin only precipitated 24% of the same tracer. Identical incubations with prelabelled diluted human serum indicated that 82% of 25-hydroxy[3H]cholecalciferol was bound to transcalciferin and 16% to human serum albumin. These results demonstrate that 25-hydroxycholecalciferol is largely bound to a specific transport protein, transcalciferin, in both species. The slightly lower binding of 25-hydroxycholecalciferol to the Cebus transcalciferin could be due to its lower association constant (Hay, 1975; Hay & Watson, 1975).

(b) Transcalciferin is smaller than albumin. The sedimentation coefficient of transcalciferin from Cebus apella was 4.1S (Fig. 1a). This value is identical with that obtained in man (Bouillon et al., 1976b). Accordingly, these proteins are smaller than human or bovine serum albumin (4.6S). It was also shown, by immunochemical localization of transcalciferin and albumin, that both proteins do not coincide after sucrose-gradient ultracentrifugation of serum of Cebus apella (Fig. 1b).

(c) Transcalciferin of the cebus monkey has an increased electrophoretic mobility. On agarose-gel electrophoresis 25-hydroxy[3H]cholecalciferol added to the serum of Cebus apella (or Cebus albifrons) is bound to a protein with a greater mobility than the corresponding protein present in human serum (Fig. 2). This confirms previous reports (Edelstein et al., 1973; Hay & Watson, 1976) that in all Cebus species (Cebus apella, Cebus albifrons and Cebus capucinus) 25-hydroxycholecalciferol is bound to a transport protein with the mobility of albumin. By using immunochemical detection of the transport protein on tandem crossed immunoelctrophoresis (Plate 2), it is evident that the transcalciferin from man and Aotus trivirgatus have the same electrophoretic mobility, since the distance of 3 cm between their respective application wells is identical with the distance between their peaks in the immunogel. The increased mobility of transcalciferin of Cebus apella compared with that of man is demonstrated by the distance of 1.4 cm between their immunoprecipitation peaks, whereas the distance between their respective application wells is only 1 cm.

Discussion

Hay (1975) reported that albumin itself was responsible for the transport of 25-hydroxycholecalciferol in the cebus monkey, because he was unable to dissociate 25-hydroxy[3H]cholecalciferol from the serum albumin peak during electrophoresis or gel filtration. This premature conclusion can now be explained, since we demonstrated that the cebus...
transcalciferin (from *Cebus apella* or *Cebus albifrons*) has indeed the electrophoretic mobility of albumin and that both proteins have only a small difference in molecular size. There can, however, be no doubt that these monkeys have a serum protein that is immunologically related to the transcalciferin of other primates and is able to bind most of the serum 25-hydroxycholecalciferol.

The phenomenon of altered electrophoretic mobility of transcalciferin not only exists in these New World monkeys but also in the human species. Indeed, several variants of group-specific components of human serum with altered electrophoretic mobility have been described [for a review, see Cleve (1973)]. This group-specific globulin is now known to be identical with transcalciferin (Daiger et al., 1975; Bouillon et al., 1976b).

The reason for the variation in electrophoretic mobility is, however, still unclear, since the molecular weight and the isoelectric point (H. Van Baelen & R. Bouillon, unpublished work) of transcalciferin, as studied by means of 25-hydroxy-[3H]cholecalciferol, are identical in man and *Cebus apella*.

Stimulating discussions with Dr. W. Heyns were very much appreciated. The technical assistance of Mrs. K. Vandecauter-Deruddere and Mr. Tan Biauw Keng is kindly acknowledged. We thank Dr. J. Desmyter and Mr. R. Verlaeckt for their supply of the monkey sera. R. B. is ‘Aangesteld Navorser’ of the Belgian Nationaal Fonds voor Wetenschappelijk Onderzoek.

References

