The Metabolism of the Phosphonium Analogue of Choline in Cultured Cells

A USEFUL NUCLEAR-MAGNETIC-RESONANCE PROBE FOR MEMBRANE PHOSPHATIDYLCHOLINE

By EDITH SIM and CHARLES A. PASTERNAK

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

(Received 17 July 1975)

1. Replacement of choline by the phosphonium analogue does not affect the growth rate of P815Y, NIL, 3T3 and SV40/3T3 cells in culture. 2. The fatty acid composition of the resulting phosphonium phosphatidylcholine is similar to that of phosphatidylcholine. 3. The rate of synthesis and degradation of phosphatidylcholine and of the phosphonium analogue are similar. 4. Phospholipid-exchange protein does not distinguish between phosphatidylcholine and the phosphonium analogue. 5. By contrast, incorporation of phosphonium choline into sphingomyelin occurs to only a minor extent. 6. It is concluded that, since the enzymes involved in the turnover of phosphatidylcholine do not discriminate between quaternary N and quaternary P in the polar head-group region, phosphonium choline should prove to be a useful probe for 31P nuclear-magnetic-resonance (n.m.r.) studies of natural membranes.

Phosphonium choline, in which the nitrogen atom of choline is replaced by a phosphorus atom (Fig. 1), gives a unique 31P n.m.r. (nuclear-magnetic-resonance) signal distinct from that of phosphate (Edwards, 1973). The analogue appears as phosphonium phosphatidylcholine in rats (Edwards, 1973) and in Neurospora crassa (J. Grayheb, unpublished work) that have been fed on phosphonium choline, without any apparent signs of toxicity. It is therefore a potentially useful probe of membrane structure, in that it is readily detectable, yet appears to cause minimal perturbation of cell membranes.

In the present paper we give details of its metabolism by a variety of normal and of transformed cells in culture. A brief report of this work has already appeared (Pasternak et al., 1975).

Experimental

Materials

Phosphonium choline chloride was synthesized by the method of Renshaw & Bishop (1938) as described by Edwards (1973). Phosphonium [14C]-choline chloride was synthesized as follows (Edwards, 1973). 2-Bromo[1,2-14C]ethanol (The Radiochemical Centre, Amersham, Bucks., U.K.) (1 mCi; 0.1 mmol), with 2-chloroethanol (3.9 mmol) as carrier, was treated with excess of trimethylphosphine (0.6 ml) and dry ethanol (0.5 ml) in a sealed glass bomb at 100°C for 6 h in an atmosphere of N2. The mixture was cooled, and ethanol, excess of trimethylphosphine and any unchanged 2-chloroethanol were removed by heating (100°C) under decreased pressure [1.3 kPa (10 mmHg)]. The resulting white solid was dissolved in water and passed down a column of Amberlite IRA-400 (Cl− form). The effluent and the water washes were dried under decreased pressure. More than 95% of the radioactivity of the resulting material migrated with phosphonium choline during paper electrophoresis in 1% (w/v) ammonium carbonate, pH 8.9. Phosphonium choline chloride used as standard was synthesized and donated by Dr. R. G. Edwards (Scheie Eye Institute, Philadelphia, Pa., U.S.A.)

Fig. 1. Structural formulae of (a) choline and (b) the phosphonium analogue of choline

* Present address: Department of Biochemistry, St. George's Hospital Medical School, Blackshaw Road, Tooting, London SW17 0QT, U.K.
Cell culture

3T3- and SV40-transformed 3T3 cells (Balb/c) and NIL 2 foetal hamster cells were grown on plastic dishes in Dulbecco's modified minimum essential medium (Dulbecco & Freeman, 1959; 0.03 mm choline) with choline replaced by an equivalent concentration of the phosphonium analogue where indicated (phosphonium Dulbecco's medium). 3T3 cells were grown in the presence of 15% (v/v) foetal calf serum and other cell lines with 10% (v/v) calf serum.

P815Y mouse mastocytoma cells were grown in suspension culture in Fischer's medium (Fischer & Sartorelli, 1964) with 8% (v/v) horse serum. All cultures contained streptomycin sulphate (5 mg/100 ml) and benzylpenicillin (30 mg/100 ml) (Glaxo Laboratories, Greenford, Middx., U.K.). Cell culture media and sera were obtained from Flow Laboratories, Irvine, Ayrshire, Scotland, U.K., from Gibco-Biocolt, Paisley, Scotland, U.K., or from Tissue Culture Services, Slough, Bucks., U.K. All cells were grown at 37°C.

Incorporation and turnover

Monolayer cells grown in Dulbecco's medium or phosphonium Dulbecco's medium for six to eight generations were passaged in Dulbecco's medium containing phosphonium [14C]choline chloride (0.04–0.1 μCi/ml; final specific radioactivity 170 μCi/mmol) and [Me–3H]choline chloride (0.15–1.0 Ci/ml; final specific radioactivity 5–35 mCi/mmol) and were grown for 3 days. The cells were then washed and passaged in Dulbecco's medium and phosphonium Dulbecco's medium and again grown to confluency. Samples of medium and cells (harvested with a Teflon 'policeman') were taken at intervals.

P815Y cells were grown in suspension culture for 3 days in Fischer's medium containing phosphonium [14C]choline chloride and [Me–3H]choline chloride as described for monolayer cultures. Alternatively, suspension cultures were pulsed with either phosphonium [14C]choline chloride (0.04 μCi/ml; final specific radioactivity 170 Ci/mmol) and [3P]orthophosphate (0.2 μCi/ml) or [Me–3H]choline chloride (0.04 μCi/ml; final specific radioactivity 150 μCi/mmol) and [3P]orthophosphate (0.2 μCi/ml). After 16 h the cells were harvested by centrifuging and then suspended in Fischer's medium and grown for a further 17 h. Appropriate dilutions were made to maintain exponential growth at all times.

All cells were extracted by the method of Polch et al. (1957) and the lipid layer was either assayed directly or was separated by two-dimensional t.l.c. on silica gel H (Merck, Darmstadt, Germany) as follows: chloroform/methanol/7 m-NH3 (46:18:3, by vol.) in the first dimension, followed by chloroform/methanol/acetic acid/water (50:50:1:4, by vol.) in the second dimension. This method separates phosphatidylcholine from the phosphonium analogue (Sim et al., 1975). Phospholipids were detected by exposure to I2 vapour, by spraying with Rhodamine B/2,7-Dichlorofluorescein (Jones et al., 1966) and observing under u.v. light, or by radioautography. Appropriate areas were removed, eluted with ethanol/chloroform/water (10:3:2, by vol.) and were assayed directly or were rechromatographed in chloroform/methanol/acetic acid/water (25:15:4:2, by vol.) (Skipski et al., 1964).

Fatty acid composition

Phosphatidylcholine and phosphonium phosphatidylcholine, separated by two-dimensional chromatography, were evaporated to dryness under N2 at 37°C and heated with benzene (0.4 ml) and alcohol (1.6 ml) and approx. 10 m-H2SO4 (0.5 μl) under N2 in a sealed tube at 70°C for 4 h. The methyl esters were extracted with light petroleum (b.p. 40–60°C), dried under N2 at room temperature (20°C) and re-suspended in acetone. Samples containing approx. 0.5 μg of phospholipid were applied to a column of 15% (w/w) polyethylene glycol succinate (80–100 mesh). The column temperature in the Pye Unicam gas–liquid chromatograph was 173–174°C and the injection temperature was 250°C. The carrier gas, argon, had a flow rate of 60 ml/min. Sub-peak areas were determined graphically or by weighing the tracings of the peaks. Molar response factors were determined by methanalysis of 0.5 mmol of standard fatty acids.

Other methods

Phospholipid P was determined by the method of Bartlett (1959) after digestion at 110°C for 24 h in constant-boiling HCl. This method of hydrolysis eliminates any contribution of the phosphonium moiety to the phosphorus content. Cellular protein (in the precipitate obtained during the lipid extraction) was determined by the method of Lowry et al. (1951) with crystalline bovine serum albumin (Sigma, Kingston-upon-Thanes, Surrey, U.K.) as standard. Radioactivity was assayed in 1:4-dioxan containing 5 g of diphenyloxazole/1 litre and 20 g of naphthalene/1 litre with an LKB–Wallac liquid-scintillation counter. Lipid samples were evaporated to dryness before assay. Appropriate corrections for the presence of 14C in the 3H channel and for efficiency were made.

Results and Discussion

Effect of phosphonium choline on growth

Phosphonium choline is without adverse effect on the growth of cultured cells. Fig. 2 shows the results
PHOSPHONIUM CHOLINE IN CULTURED CELLS

with SV40/3T3 cells, which continue to grow normally for more than eight generations in medium containing phosphonium choline as choline source. Similar results have been obtained with 3T3, NIL and P815Y cells. This may be contrasted with the inhibition in growth rate of LM cells, observed 4–5 days after transfer to medium containing monomethyl- or dimethyl-ethanolamine as choline source (Glaser et al., 1974). Cells grown on phosphonium choline as choline source have up to 60% of their phosphatidylcholine replaced by the phosphonium analogue (Pasternak et al., 1975). Failure to replace phosphatidylcholine entirely presumably reflects the presence of choline and phosphatidylcholine in the serum, as well as the extent to which the methylation of ethanolamine (Åkesson et al., 1970) might contribute to the synthesis of phosphatidylcholine.

Nature of phosphatidylcholine sub-species

Growth in the presence of phosphonium choline results in the formation of phosphonium phosphatidylcholine with an essentially similar distribution of fatty acids to that obtained with phosphatidylcholine (Table 1). In general, the phospholipid composition reflects the acyl chain composition of the serum in which cells are grown (R. M. Abra, unpublished work), which confirms previous observations (Bailey et al., 1972). Whatever apparent differences are found (e.g. in C18:0, C18:2 and C18:3 acids in SV40/3T3 cells) are not general ones (compare C18:0, C18:2 and C18:3 acids in NIL cells) and are therefore unlikely to be of significance with respect to differences in the head-group region. Insofar as the acyl-chain composition of phospholipids is determined by the necessity to maintain membranes above their phase-transition temperature (Fox, 1972), the results given in Table 1 are entirely consistent with the observation that the phase-transition temperature of distearoyl phosphatidylcholine and its phosphonium analogue are the same (Sim et al., 1975).

![Graph](image)

Fig. 2. Effect of phosphonium choline on cell growth

SV40/3T3 cells were grown in Dulbecco's medium (○) or phosphonium Dulbecco's medium (●) supplemented with 10% (v/v) calf serum. Duplicate plates were harvested at the times indicated and the cellular protein concentration was determined as described in the Experimental section.

Table 1. Comparison between fatty acid compositions of phosphatidylcholine and phosphonium phosphatidylcholine

Cells were grown in Dulbecco's medium (N growth medium) or phosphonium Dulbecco's medium (P growth medium) for six to eight generations; each medium contained 10% (v/v) calf serum. Phosphatidylcholine (N) and phosphonium phosphatidylcholine (P) were separated and analysed as described in the Experimental section. The results for SV40 3T3 cells are shown as individual values of two experiments; for NIL cells they are the means ± S.E.M. of three experiments. Tr., Component present in trace amounts (less than 1% of total fatty acids).

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Growth medium</th>
<th>Phosphatidylcholine</th>
<th>Fatty acid composition (mol%)</th>
<th>Unsat.(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C14:0</td>
<td>C16:0</td>
</tr>
<tr>
<td>SV40/3T3</td>
<td>N Total</td>
<td></td>
<td>Tr.</td>
<td>22.9</td>
</tr>
<tr>
<td>P N</td>
<td></td>
<td></td>
<td>3.6</td>
<td>24.6</td>
</tr>
<tr>
<td>P P</td>
<td></td>
<td></td>
<td>2.1</td>
<td>23.0</td>
</tr>
<tr>
<td>P P</td>
<td></td>
<td></td>
<td>3.7</td>
<td>22.3</td>
</tr>
<tr>
<td>P P</td>
<td></td>
<td></td>
<td>2.9</td>
<td>25.0</td>
</tr>
<tr>
<td>NIL</td>
<td>N Total</td>
<td></td>
<td>Tr.</td>
<td>31.8</td>
</tr>
<tr>
<td>P N</td>
<td></td>
<td></td>
<td>±1.9</td>
<td>±0.3</td>
</tr>
<tr>
<td>P P</td>
<td></td>
<td></td>
<td>±1.5</td>
<td>±1.1</td>
</tr>
<tr>
<td>P P</td>
<td></td>
<td></td>
<td>±4.5</td>
<td>±0.6</td>
</tr>
</tbody>
</table>

Vol. 154
Table 2. Isotopic ratios in cells exposed to \([^{3}H]\)choline and phosphonium \([^{14}C]\)choline

Cells were grown for 3 days in medium with serum supplement containing \([^{3}H]\)choline (0.15–1.0\,\mu\text{Ci/ml}; final specific radioactivity 5–35\,\mu\text{Ci/mm}) and phosphonium \([^{14}C]\)choline (0.04–0.1\,\mu\text{Ci/ml}; final specific radioactivity 170\,\mu\text{Ci/mm}), were harvested and extracted, and the phospholipids separated as described in the Experimental section. More than 98\% of the \(^{3}H\) and \(^{14}C\) in the lipid extract was recovered as phosphatidylcholine+sphingomyelin. Ratios are expressed as the mean \(\pm\,\text{S.E.M.}\).

<table>
<thead>
<tr>
<th>Cell line</th>
<th>No. of determinations</th>
<th>(^{3}H/^{14}C) ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulse medium</td>
<td>Aqueous extract</td>
</tr>
<tr>
<td>NIL</td>
<td>4</td>
<td>4.0</td>
</tr>
<tr>
<td>SV40/3T3</td>
<td>5</td>
<td>3.2</td>
</tr>
<tr>
<td>3T3</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>P815Y</td>
<td>1</td>
<td>11.9</td>
</tr>
</tbody>
</table>

With phosphatidylcholine analogues lacking one or two N-methyl groups, the phase-transition temperature is altered (Vaughan & Keough, 1974), and, as might be expected, so is the fatty acid composition of the phosphatidylcholine analogues (Ferguson et al., 1975).

Turnover of phospholipids

Water-soluble intermediates. Phosphonium choline is taken up and metabolized as effectively as is choline by all the cell lines studied. In fact the isotopic ratio, indicative of the choline/phosphonium choline ratio, in the water-soluble fraction of several cell lines, is somewhat lower than that in the growth medium (Table 2). Since the measurements were made at the end of a 3-day pulse, deviations from the ratio in the medium may reflect differences in the fate of the water-soluble components subsequent to turnover of phospholipids. Certainly the proteins catalysing transport and metabolism up to CDP-choline do not appear to discriminate against the phosphonium analogue. This confirms preliminary results with crude enzyme preparations from rat liver (Edwards, 1973).

Phosphatidylcholine. The extent of incorporation into cellular phospholipids is somewhat less with phosphonium choline than with choline (as revealed by the isotopic ratio; Table 2). This is largely due to an impaired incorporation into sphingomyelin (see below). The total incorporation into phosphatidylcholine is unimpaired and is the same for normal cells (3T3) and for the transformed variant (SV40/3T3) (Table 2). Once incorporated, the phosphonium analogue turns over at the same rate as phosphatidylcholine (Fig. 3), with the biphasic characteristics noted previously (Pasternak & Bergeron, 1970; Pasternak, 1972). The half-life of the unstable component (which is predominantly phosphatidylcholine as opposed to sphingomyelin; Pasternak & Bergeron, 1970) is approximately the same irrespective of whether the cells are pre-grown on choline or on phosphonium choline, and whether they are subsequently transferred to choline- or phosphonium choline-containing medium (Table 3). It should be noted that base exchange (Treble et al., 1970) is unlikely to contribute significantly to the turnover of phosphatidylcholine at the phosphonium analogue, since \([^{32}\text{P}]\)phosphate is incorporated and degraded in concert with choline or phosphonium choline (Fig. 4a).

Sphingomyelin. Table 2 shows that all cultures examined discriminate against phosphonium choline...
Table 3. Turnover of phospholipids in cells pre-labelled with \(^{3}H\)choline and phosphonium \(^{[14]}C\)choline

Cells were grown in Dulbecco's medium (N grown) or phosphonium Dulbecco's medium (P grown) for six to eight generations. Cells were then exposed to \(^{3}H\)choline (0.15 \(\mu\)Ci/ml; final specific radioactivity 5 mCi/mmol) and phosphonium \(^{[14]}C\)choline (0.04 \(\mu\)Ci/ml; final specific radioactivity 170 mCi/mmol) for 3 days, washed and passaged in Dulbecco's medium (N) or phosphonium Dulbecco's medium (P). Samples were removed at intervals over 3 days, during which time exponential growth was maintained. The specific radioactivities of \(^{3}H\) and \(^{14}C\) in the lipid extract were determined and plotted semi-logarithmically as in Fig. 3; the half-life of the unstable component (initial \(t_{1/2}\)) was determined. All cultures contained 10% (v/v) calf serum. Values obtained from individual experiments are shown.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Resuspending medium</th>
<th>Initial (t_{1/2}) (h)</th>
<th>(^{3}H)</th>
<th>(^{14}C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIL (N grown)</td>
<td>N</td>
<td>9.2</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>SV40/3T3 (N grown)</td>
<td>N</td>
<td>10.7; 10.5</td>
<td>10.0; 11.0</td>
<td></td>
</tr>
<tr>
<td>SV40/3T3 (P grown)</td>
<td>P</td>
<td>7.4</td>
<td>8.5</td>
<td></td>
</tr>
</tbody>
</table>

as far as sphingomyelin synthesis is concerned. Nevertheless a limited incorporation of phosphonium \(^{[14]}C\)choline into sphingomyelin is probably real, since the sphingomyelin area obtained after two-dimensional t.l.c. is partially resolved into choline- and phosphonium choline-containing species. The relative positions of the two components are the same as those of phosphatidylcholine and phosphonium phosphatidylcholine (Sim et al., 1975). Incorporation of phosphonium choline into sphingomyelin may represent the minor of the two postulated pathways for the biosynthesis of sphingomyelin: (1) condensation of CDP-choline with ceramide (Sribney & Kennedy, 1958) and (2) transfer of the phosphorylcholine moiety from phosphatidylcholine directly to ceramide (Marggraf & Anderer, 1974). That the latter pathway operates in the cells under study is indicated by the fact that maximum labelling of sphingomyelin is achieved some hours after that of phosphatidylcholine (see Figs. 4a and 4b). Fig. 4(b) indicates very clearly the relative lack of sphingomyelin synthesis from phosphonium choline. Whether the block is at reaction (1) or (2) requires further investigation.

Phospholipid-exchange proteins. In view of the fact that cultured cells (Pasternak, 1976) contain proteins capable of exchanging phosphatidylcholine between different organelles (Wirtz, 1974), it seemed worth while to test the activity of a partially purified

Fig. 4. Incorporation of \(^{[3]}H\)choline, phosphonium \(^{[14]}C\)-choline and \(^{[32]}P\)phosphate into phosphatidylcholine and sphingomyelin

P815Y cells growing in Fischer's medium with 8% (v/v) horse serum were exposed either to \(^{[3]}H\)choline (0.04 \(\mu\)Ci/ml; final specific radioactivity 150 mCi/mmol) and \(^{[32]}P\)-phosphate (0.2 \(\mu\)Ci/ml) or to phosphonium \(^{[14]}C\)choline (0.04 \(\mu\)Ci/ml; final specific radioactivity 170 mCi/mmol) and \(^{[32]}P\)phosphate (0.2 \(\mu\)Ci/ml) for 16h. Each culture was resuspended in Fischer's medium containing 8% (v/v) horse serum and allowed to grow for a further 17h. Samples were taken at intervals and the specific radioactivities (c.p.m./\(\mu\)g of phospholipid) of phospholipid (a) and the corresponding \(^{[32]}P\) (b) or of \(^{14}C\) (c) and the corresponding \(^{[32]}P\) (d) in phosphatidylcholine (a) and in sphingomyelin (b) were determined as described in the Experimental section. The arrow denotes the start of the 'chase' period.
Table 4. Comparison of the activities of phospholipid-exchange protein towards phosphatidylcholine and phosphonium phosphatidylcholine

<table>
<thead>
<tr>
<th>Expt. no.</th>
<th>Temp. (°C)</th>
<th>Phospholipid-exchange protein (µg/ml)</th>
<th>Labelled component</th>
<th>Final sp. radioactivity of unlabelled component (d.p.m./µg of phospholipid P)</th>
<th>H/14C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>-</td>
<td>Liposomes</td>
<td>1200, 20</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>20</td>
<td>Liposomes</td>
<td>2840, 46</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>-</td>
<td>Liposomes</td>
<td>2210, 35</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>20</td>
<td>Liposomes</td>
<td>3300, 49</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>-</td>
<td>Microsomal fraction</td>
<td>400, 30</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>10</td>
<td>Microsomal fraction</td>
<td>960, 86</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>20</td>
<td>Microsomal fraction</td>
<td>950, 94</td>
<td>10</td>
</tr>
</tbody>
</table>

phospholipid-exchange protein against the phosphonium analogue of phosphatidylcholine. Table 4 shows that phosphatidylcholine and phosphonium phosphatidylcholine are exchanged with equal efficiency between sonicated phospholipid vesicles and mammalian liver microsomal particles. Whatever the physiological significance of phospholipid-exchange proteins proves to be, it thus becomes possible to introduce phosphonium choline-containing phospholipids into cell membranes under defined conditions, for subsequent 31P n.m.r. studies.

Conclusions

The results presented indicate that phosphonium choline is likely to prove at least as useful a probe of membrane structure as 13C-enriched lipids (Metcalfe et al., 1972) or spin-labelled fatty acids (Tourtellotte et al., 1970), in that it is incorporated biosynthetically and causes minimal perturbation. Its advantage lies, not only in the uniqueness of the phosphonium 31P n.m.r. signal (Edwards, 1973), but also in the fact that it is specifically incorporated into only one phospholipid class, phosphatidylcholine, to any major extent. This is in contrast with the deuterated analogue of choline recently used as an n.m.r. probe by Arvidson et al. (1975), which is incorporated into both phosphatidylcholine and sphingomyelin. The discrimination against incorporation of phosphonium choline into sphingomyelin may prove useful in investigating the biosynthesis of sphingomyelin-enriched membranes such as the plasma membrane.

We are grateful to Dr. A. R. Hands for help with chemical syntheses, to Dr. J. C. Metcalfe for a gift of phospholipid-exchange protein and to the M.R.C. and Cancer Research Campaign for financial support. E. S. acknowledges the receipt of an M.R.C. Training Award.

References

Dulbecco, R. & Freeman, G. (1959) Virology 8, 396–397

1976
PHOSPHONIUM CHOLINE IN CULTURED CELLS

Sim, E., Cullis, P. R. & Richards, R. E. (1975) Biochem. J. 151, 555-560