OFFICERS AND COMMITTEE, 1975–76

Chairman of the Committee
T. S. Work

Committee
G. B. Ansell

Treasurer
B. A. Askonas, F.R.S.

D. F. Elliott
H. S. Bachelard

General Secretary
H. M. Keir

K. Burton, F.R.S.

Publications Secretary
J. T. Dingle*

R. M. C. Dawson
C. A. Fewson

Meetings Secretary
C. Green

J. B. Lloyd
K. Griffiths

Assistant Meetings Secretary
M. G. Harrington

H. F. Bradford
J. N. Hawthorne

C. H. S. Hitchcock

J. J. Holbrook
H. K. King
R. J. B. King
T. F. Slater

*Ex officio Member of Committee; representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].
The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1976 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>1976</td>
</tr>
<tr>
<td>1 Jan. 153</td>
<td>1 Jan. 154</td>
</tr>
<tr>
<td>1 Feb. 153</td>
<td>1 Feb. 154</td>
</tr>
<tr>
<td>1 Mar. 153</td>
<td>15 Mar. 154</td>
</tr>
<tr>
<td>1 Apr. 155</td>
<td>15 Apr. 154</td>
</tr>
<tr>
<td>1 May 155</td>
<td>15 May 156</td>
</tr>
<tr>
<td>1 June 155</td>
<td>15 June 156</td>
</tr>
<tr>
<td>1 July 157</td>
<td>15 July 158</td>
</tr>
<tr>
<td>1 Aug. 157</td>
<td>15 Aug. 158</td>
</tr>
<tr>
<td>1 Sept. 157</td>
<td>15 Sept. 158</td>
</tr>
<tr>
<td>1 Oct. 159</td>
<td>15 Oct. 160</td>
</tr>
<tr>
<td>1 Nov. 159</td>
<td>15 Nov. 160</td>
</tr>
<tr>
<td>1 Dec. 159</td>
<td>15 Dec. 160</td>
</tr>
</tbody>
</table>

* Completes volume, and includes Indexes.

Biochemical Society Transactions. This is now a separate publication (see below). Volume 4 will be published in 1976, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription in 1976 is £124.00. Subject to exchange variation the rate for U.S.A., Canada and Mexico is $320.00 (despatch by air freight to these countries).

Subscribers to the *Biochemical Journal* can subscribe to *Biochemical Society Transactions* on a joint subscription, saving £10 ($25.00). The joint subscription is £138.00 ($355.00) to addressees in U.S.A., Canada and Mexico; both publications despatched by air freight).

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting, plus such time as would be expected for transit by post.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

(a) Microfilm (35 mm): Volumes 1–101.

(b) Microfiche (98-image): Volumes 102–152.

Details and prices are available on request from the Biochemical Society's Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.

(iii)
ACKNOWLEDGEMENT TO REFEREES

The Editorial Board of the Biochemical Journal gratefully acknowledges the assistance generously given during the 1974–75 academic year by the following referees:

R. J. Abraham
D. H. Adams
R. L. P. Adams
S. Ainsworth
M. Akhtar
W. N. Aldridge
A. Allen
A. C. Allison
R. P. Ambler
A. F. H. Anderson
P. Andrews
G. B. Ansell
D. K. Apps
T. ap Rees
A. R. Archibald
H. R. V. Arnstein
S. J. H. Ashcroft
A. Atkinson
H. S. Bachelard
J. S. D. Bacon
A. J. Bailey
E. Bailey
G. D. Baird
A. D. Bangham
G. R. Banks
W. G. Bardsley
G. R. Barker
M. J. Barnes
A. J. Barrett
W. Bartley
P. M. Bayley
J. G. Beeley
P. Bell
D. S. Bendall
C. C. F. Blake
A. Blow
R. P. M. Bond
A. H. Bone
I. A. D. Bouchier
D. Boulter
D. Bowen
D. H. Boxer
G. S. Boyd
R. C. Bray
D. Brindley
G. Britton
K. Brocklehurst
J. R. Bronk
P. Brookes
G. T. Brooks

R. V. Brooks
B. L. Brown
E. G. Brown
K. D. Buchanan
R. H. Burdon
R. Burns
K. Burton
P. J. G. Butler
V. S. Butt
P. J. Butterworth
F. Bygrave
R. Cammack
A. K. Campbell
D. J. Candy
E. M. Carey
R. Cecil
D. Chapman
P. A. Charlwood
C. J. Chesterton
A. R. Chipperfield
J. R. Clamp
P. Cohen
J. A. Cole
R. Coleman
G. M. W. Cook
R. D. Cooke
H. G. Coore
A. J. Cornish-Bowden
R. A. Cox
B. Crabtree
V. M. Craddock
N. Crawford
J. M. Creeth
E. M. Crook
G. W. Crosbie
M. J. Crumpton
V. J. Cunningham
A. Feinstein
G. S. Fell
W. Ferdinand
E. B. Fern
H. N. Fernley
A. R. Fersht
E. M. Fielden
J. B. C. Findlay
J. B. Finean
D. Fisher
J. C. Fletcher
A. P. Flint
B. F. Folkes
P. J. Ford
A. B. Foster
J. F. Foster
J. E. Fothergill
D. Fraser
R. Fraser
W. Fuller
M. K. Gaitonde
P. J. Garlick
B. Gillham
J. Glover
L. J. Goad
D. Gompertz
<table>
<thead>
<tr>
<th>Name</th>
<th>Acknowledged By</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. H. Gordon</td>
<td>W. Jacobson</td>
</tr>
<tr>
<td>J. Gordon</td>
<td>A. T. James</td>
</tr>
<tr>
<td>J. W. Gorrod</td>
<td>S. P. James</td>
</tr>
<tr>
<td>B. J. Gould</td>
<td>E. W. Johns</td>
</tr>
<tr>
<td>G. Gould</td>
<td>I. R. Johnston</td>
</tr>
<tr>
<td>H. Gould</td>
<td>E. A. Jones</td>
</tr>
<tr>
<td>D. G. Graeme-Smith</td>
<td>I. G. Jones</td>
</tr>
<tr>
<td>J. K. Grant</td>
<td>J. Kay</td>
</tr>
<tr>
<td>C. H. Gray</td>
<td>H. M. Keir</td>
</tr>
<tr>
<td>M. Gray</td>
<td>R. G. O. Kekwick</td>
</tr>
<tr>
<td>A. L. Greenbaum</td>
<td>G. L. Kellett</td>
</tr>
<tr>
<td>C. Greenwood</td>
<td>G. W. Kenner</td>
</tr>
<tr>
<td>G. Gregoriadis</td>
<td>A. J. Kenny</td>
</tr>
<tr>
<td>K. Griffiths</td>
<td>P. W. Kent</td>
</tr>
<tr>
<td>W. T. Griffiths</td>
<td>D. Kerridge</td>
</tr>
<tr>
<td>M. I. Gurr</td>
<td>L. J. King</td>
</tr>
<tr>
<td>H. Gutfreund</td>
<td>R. W. King</td>
</tr>
<tr>
<td>W. E. Gutteridge</td>
<td>D. N. Kirk</td>
</tr>
<tr>
<td>B. A. Haddock</td>
<td>J. T. Knower</td>
</tr>
<tr>
<td>C. N. Hales</td>
<td>C. J. Knowles</td>
</tr>
<tr>
<td>A. P. Halestrap</td>
<td>P. F. Knowles</td>
</tr>
<tr>
<td>D. O. Hall</td>
<td>P. Knox</td>
</tr>
<tr>
<td>T. Hallinan</td>
<td>H. A. Krebs</td>
</tr>
<tr>
<td>G. Halliwell</td>
<td>D. L. Laidman</td>
</tr>
<tr>
<td>W. A. Hamilton</td>
<td>B. G. Lake</td>
</tr>
<tr>
<td>J. J. Harding</td>
<td>P. J. Large</td>
</tr>
<tr>
<td>T. E. Hardingham</td>
<td>P. Larkin</td>
</tr>
<tr>
<td>J. I. Harris</td>
<td>G. H. Lathe</td>
</tr>
<tr>
<td>P. M. Harrison</td>
<td>D. E. M. Lawson</td>
</tr>
<tr>
<td>G. A. D. Haslewood</td>
<td>N. R. Lazarus</td>
</tr>
<tr>
<td>J. N. Hawthorne</td>
<td>B. Lockie</td>
</tr>
<tr>
<td>P. J. Heald</td>
<td>H. Lehmann</td>
</tr>
<tr>
<td>R. B. Heap</td>
<td>W. R. Lieb</td>
</tr>
<tr>
<td>D. F. Heath</td>
<td>M. D. Lilly</td>
</tr>
<tr>
<td>C. O. Hebb</td>
<td>L. Lim</td>
</tr>
<tr>
<td>D. A. Hems</td>
<td>J. L. Linzell</td>
</tr>
<tr>
<td>P. J. F. Henderson</td>
<td>D. Lloyd</td>
</tr>
<tr>
<td>T. R. Hesketh</td>
<td>J. B. Lloyd</td>
</tr>
<tr>
<td>R. C. Hider</td>
<td>C. Long</td>
</tr>
<tr>
<td>S. J. Higgins</td>
<td>P. Larkin</td>
</tr>
<tr>
<td>R. H. Hinton</td>
<td>D. J. Lowe</td>
</tr>
<tr>
<td>A. R. Hipkiss</td>
<td>G. Lowe</td>
</tr>
<tr>
<td>D. Hochenhull</td>
<td>P. J. Lund</td>
</tr>
<tr>
<td>R. Hoffenberg</td>
<td>M. R. Lunt</td>
</tr>
<tr>
<td>W. E. Hornby</td>
<td>A. J. MacGillivray</td>
</tr>
<tr>
<td>L. Hough</td>
<td>B. E. H. Maden</td>
</tr>
<tr>
<td>M. D. Houslay</td>
<td>P. N. Magee</td>
</tr>
<tr>
<td>A. K. Huggins</td>
<td>D. J. Manners</td>
</tr>
<tr>
<td>E. C. Hulme</td>
<td>W. Manson</td>
</tr>
<tr>
<td>D. W. Hutchinson</td>
<td>R. M. Marchbanks</td>
</tr>
<tr>
<td>J. Ingle</td>
<td>B. R. Martin</td>
</tr>
<tr>
<td>L. L. Iversen</td>
<td>I. Mason</td>
</tr>
<tr>
<td>A. H. Jackson</td>
<td>M. Masters</td>
</tr>
<tr>
<td>D. S. Jackson</td>
<td>A. P. Mathias</td>
</tr>
<tr>
<td>R. J. Jackson</td>
<td>H. R. Matthews</td>
</tr>
<tr>
<td>B. Mawer</td>
<td>J. D. McGivnan</td>
</tr>
<tr>
<td>J. D. McIlwain</td>
<td>H. McIlwain</td>
</tr>
<tr>
<td>A. E. M. McLean</td>
<td>P. M. Meadow</td>
</tr>
<tr>
<td>J. Melling</td>
<td>S. M. Metcalfe</td>
</tr>
<tr>
<td>F. Michal</td>
<td>R. H. Michell</td>
</tr>
<tr>
<td>B. Middleton</td>
<td>J. E. M. Midgley</td>
</tr>
<tr>
<td>D. J. Millward</td>
<td>C. Milstein</td>
</tr>
<tr>
<td>C. P. Milstein</td>
<td>L. E. Mole</td>
</tr>
<tr>
<td>W. Montague</td>
<td>R. Moor</td>
</tr>
<tr>
<td>C. J. O. R. Morris</td>
<td>L. J. Morris</td>
</tr>
<tr>
<td>J. M. Morrison</td>
<td>D. W. Moss</td>
</tr>
<tr>
<td>H. Muir</td>
<td>R. Mulvey</td>
</tr>
<tr>
<td>E. A. Munn</td>
<td>K. Murray</td>
</tr>
<tr>
<td>N. B. Myant</td>
<td>P. C. Newell</td>
</tr>
<tr>
<td>E. A. Newsholme</td>
<td>A. A. Newton</td>
</tr>
<tr>
<td>D. G. Nicholls</td>
<td>B. H. Nicholson</td>
</tr>
<tr>
<td>D. C. Nicholson</td>
<td>I. A. Nimmo</td>
</tr>
<tr>
<td>D. H. Northcote</td>
<td>G. Nuki</td>
</tr>
<tr>
<td>P. B. Nunn</td>
<td>P. O'Carra</td>
</tr>
<tr>
<td>A. A. Newton</td>
<td>G. W. Offer</td>
</tr>
<tr>
<td>M. G. Ord</td>
<td>A. G. Ogston</td>
</tr>
<tr>
<td>D. Osborne</td>
<td>D. Osborne</td>
</tr>
<tr>
<td>J. H. Ottawa</td>
<td>O. Parkes</td>
</tr>
<tr>
<td>R. M. E. Parkhouse</td>
<td>R. M. E. Parkhouse</td>
</tr>
<tr>
<td>D. S. Parsons</td>
<td>S. M. Partridge</td>
</tr>
<tr>
<td>C. A. Pasternak</td>
<td>W. S. Peart</td>
</tr>
<tr>
<td>J. F. Pennock</td>
<td>M. F. Perutz</td>
</tr>
<tr>
<td>T. J. Peters</td>
<td>C. F. Phelps</td>
</tr>
<tr>
<td>C. F. Phelps</td>
<td>P. J. R. Phrackerley</td>
</tr>
<tr>
<td>V. R. Pickles</td>
<td>G. A. J. Pitt</td>
</tr>
</tbody>
</table>
R. Pitt-Rivers
D. T. Plummer
A. R. Poole
J. W. Porteous
R. R. Porter
G. M. Powell
E. M. Press
R. G. Price
J. D. Priddle
J. B. Pridham
R. H. Pritchard
R. V. Quincey
T. Rabbitts
M. Raff
W. N. M. Ramsay
C. Ratledge
J. Reynolds
E. G. Richards
G. C. K. Roberts
J. I. S. Robertson
D. S. Robinson
G. B. Robinson
R. Rodnight
H. J. Rogers
D. B. Roodyn
L. L. Rudel
B. E. Ryman
E. D. Saggerson
F. Sanger
J. R. Sargent
D. J. Saunders
J. G. Scane
J. E. Scott
M. J. Selwyn
S. Shall
N. Shaw
A. Sheltawy
H. S. A. Sherratt
A. H. Short
A. Silver
A. P. Sims
P. Sims
M. L. Sinnott
T. F. Slater
R. M. S. Smellie
A. E. Smith
K. E. Smith
K. Snell
G. A. Snow
E. Southern
G. H. Spray
M. Spry
S. W. Stanbury
D. A. Stansfield
J. R. Stark
F. S. Steven
L. Stevens
J. Stirling
H. B. Stoner
R. J. Stoodley
R. J. Sturgeon
I. W. Sutherland
L. Svennerholm
P. F. Swann
B. E. P. Swoboda
R. L. M. Synge
G. H. Tait
M. J. A. Tanner
J. R. Tata
C. B. Taylor
E. W. Taylor
K. W. Taylor
F. W. J. Teale
J. O. Thomas
R. V. Thomson
C. J. R. Thorne
C. J. Threlfall
K. F. Tipton
M. P. Tombs
D. L. Topping
I. P. Trayer
M. Tree
D. R. Trentham
A. J. Trewavas
P. K. Tubbs
N. Tudball
M. R. Turner
G. Turnock
J. R. Turvey
R. van Heyningen
P. F. T. Vaughan
C. A. Vernon
H. E. Wade
S. G. Waley
P. G. Walker
R. Walker
R. J. Walker
D. Walsh
M. J. Waring
G. B. Warren
J. C. Waterlow
W. M. Watkins
D. C. Watts
H. B. Waynforth
A. G. Weeds
P. D. J. Weitzman
M. Webb
I. C. West
K. P. Wheeler
D. A. White
K. Wildenthal
J. M. Wilkinson
S. G. Wilkinson
D. J. Williams
J. Williams
R. T. Williams
E. D. Wills
B. G. Winchester
A. Wiseman
E. J. Wood
D. Woolley
J. C. Wootton
T. S. Work
E. A. Wren
D. W. Yates
M. G. Yates
M. B. H. Youdim
M. D. Yudkin
L. J. Zatman
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åberg, L.</td>
<td>477</td>
</tr>
<tr>
<td>Abraham, E. P.</td>
<td>729</td>
</tr>
<tr>
<td>Allen, G.</td>
<td>747</td>
</tr>
<tr>
<td>Baccino, F. M.</td>
<td>567</td>
</tr>
<tr>
<td>Baddiley, J.</td>
<td>671</td>
</tr>
<tr>
<td>Barclay, A. N.</td>
<td>685</td>
</tr>
<tr>
<td>Barrett, M. C.</td>
<td>677</td>
</tr>
<tr>
<td>Boland, M. J.</td>
<td>715</td>
</tr>
<tr>
<td>Brinkworth, R. I.</td>
<td>631</td>
</tr>
<tr>
<td>Brown, D. G.</td>
<td>505</td>
</tr>
<tr>
<td>Brown, K. B.</td>
<td>505</td>
</tr>
<tr>
<td>Carlstedt, I.</td>
<td>477</td>
</tr>
<tr>
<td>Choi, H. U.</td>
<td>543</td>
</tr>
<tr>
<td>Cittanova, N.</td>
<td>513</td>
</tr>
<tr>
<td>Clamp, J. R.</td>
<td>491</td>
</tr>
<tr>
<td>Cullis, P. R.</td>
<td>555</td>
</tr>
<tr>
<td>Dawson, A. P.</td>
<td>677</td>
</tr>
<tr>
<td>de Lauzon, S.</td>
<td>513</td>
</tr>
<tr>
<td>De Ley, M.</td>
<td>561</td>
</tr>
<tr>
<td>Desai, R.</td>
<td>707</td>
</tr>
<tr>
<td>Devinson, E. V.</td>
<td>615</td>
</tr>
<tr>
<td>Don, M. M.</td>
<td>625</td>
</tr>
<tr>
<td>Dowben, R. M.</td>
<td>755</td>
</tr>
<tr>
<td>Doyen, N.</td>
<td>637</td>
</tr>
<tr>
<td>Erdös, E. G.</td>
<td>755</td>
</tr>
<tr>
<td>Eyre, D. R.</td>
<td>595</td>
</tr>
<tr>
<td>Fawcett, P. A.</td>
<td>741</td>
</tr>
<tr>
<td>Feinstein, A.</td>
<td>615</td>
</tr>
<tr>
<td>Fransson, L.-Å.</td>
<td>477</td>
</tr>
<tr>
<td>Frieden, E.</td>
<td>519</td>
</tr>
<tr>
<td>Gaucher, G. M.</td>
<td>527</td>
</tr>
<tr>
<td>Gedney, C. D.</td>
<td>755</td>
</tr>
<tr>
<td>Gerwig, G. J.</td>
<td>491</td>
</tr>
<tr>
<td>Green, M. L.</td>
<td>763</td>
</tr>
<tr>
<td>Gutfreund, H.</td>
<td>715</td>
</tr>
<tr>
<td>Hancock, I. C.</td>
<td>671</td>
</tr>
<tr>
<td>Harris, J. I.</td>
<td>747</td>
</tr>
<tr>
<td>Harwood, J. L.</td>
<td>707</td>
</tr>
<tr>
<td>Hext, P.</td>
<td>707</td>
</tr>
<tr>
<td>Hopwood, J. J.</td>
<td>581</td>
</tr>
<tr>
<td>Idler, W. W.</td>
<td>603</td>
</tr>
<tr>
<td>Jayle, M.-F.</td>
<td>513</td>
</tr>
<tr>
<td>Kamerling, J. P.</td>
<td>491</td>
</tr>
<tr>
<td>Krall, J. F.</td>
<td>497</td>
</tr>
<tr>
<td>Lambert, P. A.</td>
<td>671</td>
</tr>
<tr>
<td>Lapresle, C.</td>
<td>637</td>
</tr>
<tr>
<td>Lara, F. J. S.</td>
<td>575</td>
</tr>
<tr>
<td>Laurent, C.</td>
<td>513</td>
</tr>
<tr>
<td>Letarte-Muirhead, M.</td>
<td>685</td>
</tr>
<tr>
<td>Loder, B.</td>
<td>729</td>
</tr>
<tr>
<td>Malmström, A.</td>
<td>477</td>
</tr>
<tr>
<td>Masters, C. J.</td>
<td>625</td>
</tr>
<tr>
<td>McIntyre, R. J.</td>
<td>759</td>
</tr>
<tr>
<td>Meyer, K.</td>
<td>543</td>
</tr>
<tr>
<td>Milstein, C. P.</td>
<td>615</td>
</tr>
<tr>
<td>Mole, L. E.</td>
<td>751</td>
</tr>
<tr>
<td>Muir, H.</td>
<td>595</td>
</tr>
<tr>
<td>Nelson, N. F.</td>
<td>505</td>
</tr>
<tr>
<td>Nunez, E.</td>
<td>513</td>
</tr>
<tr>
<td>Okretic, M. C.</td>
<td>575</td>
</tr>
<tr>
<td>O'Malley, B. W.</td>
<td>497</td>
</tr>
<tr>
<td>Osaki, S.</td>
<td>519</td>
</tr>
<tr>
<td>Pascual, E.</td>
<td>519</td>
</tr>
<tr>
<td>Pernigotti, L.</td>
<td>567</td>
</tr>
<tr>
<td>Phillips, N.</td>
<td>469</td>
</tr>
<tr>
<td>Raymont, C. M.</td>
<td>751</td>
</tr>
<tr>
<td>Reynolds, J. J.</td>
<td>645</td>
</tr>
<tr>
<td>Richards, R.</td>
<td>707</td>
</tr>
<tr>
<td>Richards, R. E.</td>
<td>555</td>
</tr>
<tr>
<td>Richardson, N. E.</td>
<td>615</td>
</tr>
<tr>
<td>Robinson, D.</td>
<td>469</td>
</tr>
<tr>
<td>Robinson, H. C.</td>
<td>581</td>
</tr>
<tr>
<td>Sexton, R. C.</td>
<td>519</td>
</tr>
<tr>
<td>Sim, E.</td>
<td>555</td>
</tr>
<tr>
<td>Socher, S. H.</td>
<td>497</td>
</tr>
<tr>
<td>Steinert, P. M.</td>
<td>603</td>
</tr>
<tr>
<td>Stevenson, F. K.</td>
<td>751</td>
</tr>
<tr>
<td>Stevenson, G. T.</td>
<td>751</td>
</tr>
<tr>
<td>Stevenson, K. J.</td>
<td>527</td>
</tr>
<tr>
<td>Tetley, T.</td>
<td>707</td>
</tr>
<tr>
<td>Usher, J. J.</td>
<td>729</td>
</tr>
<tr>
<td>Van, N. T.</td>
<td>497</td>
</tr>
<tr>
<td>Vaughan, P. F. T.</td>
<td>759</td>
</tr>
<tr>
<td>Vliegenthart, J. F. G.</td>
<td>491</td>
</tr>
<tr>
<td>Ward, P. E.</td>
<td>755</td>
</tr>
<tr>
<td>Werb, Z.</td>
<td>645</td>
</tr>
<tr>
<td>Williams, A. F.</td>
<td>685</td>
</tr>
<tr>
<td>Winchester, B.</td>
<td>469</td>
</tr>
<tr>
<td>Winzor, D. J.</td>
<td>625</td>
</tr>
</tbody>
</table>
NOTES FOR CONTRIBUTORS

It is the policy of the *Biochemical Journal* to publish papers in English in all fields of biochemistry, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary or inconclusive experiments should not generally be described.

Two types of paper are accepted by the editors. **Full-length papers.** Papers submitted for publication should be sent, together with an extra copy of the synopsis, to the Executive Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 3DP. Typescripts should bear the name and address of the person to whom the proof of the paper is to be sent.

Papers submitted should be written concisely. Special attention is directed to the sections below concerning the preparation of the typescript. Typescripts that are not concise or do not conform to the conventions of the *Biochemical Journal* will be returned to the authors for revision. If a paper that has been returned to an author for revision is not resubmitted within one month, it will, on resubmission, be deemed to be a new paper and the date of receipt altered accordingly. A revised paper containing a significant amount of new material will also be redated.

Submission of a paper to the Editorial Board implies that it has been approved by all the named authors, that it reports unpublished work, that it is not under consideration for publication elsewhere, and that if accepted for the *Biochemical Journal* it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board.

Papers should be headed by a concise but informative full title, by the names of the authors (preferably with one forename in full for each author) and by the name and address of the establishment where the work was performed. Details of financial support appear in the acknowledgements at the end of the paper.

Before preparing papers authors should consult a current issue of the Journal to make themselves familiar with the general format, such as the use of cross-headings, lay-out of tables and citation of references. Papers should be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size and wide margins. The top copy should be submitted. It cannot be overemphasized that the need for revision of badly prepared typescripts inevitably leads to delays in publication.

Papers on specialized subjects should be presented so that they are intelligible to the ordinary reader of the Journal. Sufficient information must be included to permit repetition of the experimental work.

Short Communications. Typescripts should be submitted *in duplicate*, written in English, and conform strictly to the form of the Journal as far as spelling and abbreviations are concerned. Each Short Communication should be provided with a short synopsis (normally not exceeding 50 words). Such communications should not exceed 2400 words in length inclusive of the title, references etc. Authors may include up to two insertions such as tables, figures or schemes; in these cases authors must assess what proportion of a page these insertions will occupy and reduce the number of text words accordingly at the rate of 700 words per full page of the Journal. Authors are advised that the preparation of tables and especially figures is liable to cause a slight increase in publication time. Under no circumstances whatsoever can a complete Short Communication occupy more than four pages of the Journal. Papers should be complete in themselves; (1) the methods used in experimental work must be adequately described or sufficient reference given to allow repetition of the work; (2) sufficient indication of the results of experimental work must be included to justify the claims made. Communications should be addressed to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP.

(xv)
INDEX OF AUTHORS

INDEX

INDEX OF AUTHORS

ABERG, L. see MALMSTRÖM, A. 477-489
ABRAHAM, E. P. see FAWCETT, P. A. 741-746; Usher, J. J. 729-739
ALLEN, G. & HARRIS, J. I. The binding of nicotinamide-adenine dinucleotide to glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus 747-749
AMBLER, R. P. The amino acid sequence of Staphylococcus aureus penicillinase 197-218
AMPHLETT, G. W. see JACKSON, P. 85-97
ANDERSON, A. J. & ARCHIBAND, A. R. Poly(glucosyl-glycerol phosphate) teichoic acid in the walls of Bacillus stearothermophilus B65 115-120
ARCHIBALD, A. R. see ANDERSON, A. J. 115-120
BACCINO, F. M., ZURETTI, M. F. & PERNIGOTI, L. Stimulation of rat liver β-galactosidase activity by ions 567-573
BADDILEY, J. see LAMBERT, P. A. 671-676; POWELL, D. A. 387-397
BARCLAY, A. N. see also LETARTE-MURHEAD, M. 685-697
BARNETT, M. C. & DAWSON, A. P. The reaction of choline dehydrogenase with some electron acceptors 677-683
BERRY, S. A. & MAYER, R. J. Purification and properties of 6-phosphogluconate dehydrogenase from rabbit mammary gland 263-270
BLAIR, A. H. see SIDHU, R. S. 443-445
BOHUON, C. see BOUDENE, C. 413-415
BOLAND, M. J. & GUTFREUND, H. Pig heart lactate dehydrogenase. Binding of pyruvate and the interconversion of pyruvate-containing ternary complexes 715-727
BOUDENE, C., DUPREY, F. & BOHUON, C. Radioimmunoadsay of colchicine 413-415
BRENA, O., PERRELLA, M., FACE, M. & PIETTA, P. G. Affinity-chromatography purification of alkaline phosphatase from calf intestine 291-296
BRINKWORTH, R. I., MASTERS, C. J. & WINZOR, D. J. Evaluation of equilibrium constants for the interaction of lactate dehydrogenase isoenzymes with reduced nicotinamide-adenine dinucleotide by affinity chromatofocusing 631-636
BROCKLEHURST, K. see STUCHBURY, T. 417-432
BROWN, D. G. see BROWN, K. B. 505-512
BROWN, K. B., NELSON, N. F. & BROWN, D. G. Effects of polyamines and methylglyoxal bis(guanhydrazine) on hepatic nuclear structure and deoxyribonucleic acid template activity 505-512
BRUNORI, M., PARR, S. R., GREENWOOD, C. & WILSON, M. T. A temperature-jump study of the reaction between azurin and cytochrome c oxidase from Pseudomonas aeruginosa 185-188
CAMMACK, R. see MULLINGER, R. N. 75-83
CARLSTEDT, I. see MALMSTRÖM, A. 477-489
CHEN, S.-S. & ENGEL, P. C. Dogfish M4 lactate dehydrogenase: reversible inactivation by pyridoxal 5'-phosphate and complete protection in complexes that mimic the active ternary complex 447-449
CHEN, S.-S. & ENGEL, P. C. Reversible modification of pig heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate 297-303
CHEN, S.-S. see also ENGEL, P. C. 305-318
CHERAYIL, J. D. see THIMMAPAYA, B. 377-386
CHOI, H. U. & MEYER, K. The structure of keratan sulphates from various sources 543-553
CITTANOVA, N. see LAURENT, C. 513-518
CLAMP, J. R. see KAMELING, J. P. 491-495
COLBY, J., DALTON, H. & WHITTENBURG, R. An improved assay for bacterial methane mono-oxygenase. Some properties of the enzyme from Methylobacterium methanica 459-462
CORNISH-BOWDEN, A. see MARGISON, G. P. 249-256; STORER, A. C. 361-367
CULLIS, P. R. see SIM, E. 555-560
DALTON, H. see COLBY, J. 459-462
DARLISON, M. G. see STORER, A. C. 361-367
DAWSON, A. P. see BARRETT, M. C. 677-683
DEAN, R. T. see MESHER, M. 17-22
DE LAUZON, S. see LAURENT, C. 513-518
DE LEY, M. & OSAKI, S. Intramolecular electron transport in human ferritoxidase (caeruloplasmin) 561-566
DESAI, R. see HARWOOD, J. L. 707-714
DEVERSON, E. V. see MILSTEIN, C. P. 615-624
DICKSON, D. P. E. see MULLINGER, R. N. 75-83
DIETRICH, C. P. see MICHELACCI, Y. M. 121-129
DIXON, H. B. F. Factorization of the Michaelis functions 271-274
DON, M. M., MASTERS, C. J. & WINZOR, D. J. Further evidence for the concept of bovine plasma arylesterase as a lipoprotein 625-630
DOWBEN, R. M. see WARD, P. E. 755-758
DOYEN, N. see LAFRASSE, C. 637-643
DUCOWITCH, M. see POWELL, D. A. 387-397
DUPREY, F. see BOUDENE, C. 413-415
EDWARDS, R. G., THOMAS, P. & WESTWOOD, J. H. The purification and properties of a β-N-acetylhexosaminidase from Trichomonas foetus 145-148
ENGEL, P. C. & CHEN, S.-S. A product-inhibition study of bovine liver glutamate dehydrogenase 305-318
ENGEL, P. C. see also CHEN, S.-S. 297-303, 447-449
ENGELBOURGH, Y., MARSH, A. & GUTFREUND, H. A quenched-flow study of the reaction catalysed by creatine kinase 47-50
ENNIS, C. A. see KANESHIRO, C. M. 433-434
ERDÖS, E. G. see WARD, P. E. 755-758
ERYE, D. R. & MUIR, H. The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig 595-602

Vol. 151
Fawcett, P. A., Ushir, J. J. & Abraham, E. P. Behaviour of tritium-labelled isopenicillin N and 6-aminopenicillic acid as potential penicillin precursors in an extract of *penicillum chrysogenum* 741-746

Feinstein, A. see Melstein, C. P. 615-624

Fransson, L. Å., see Malmström, A. 477-489

Freakson, N. & Perry, S. V. Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles 99-107

Frieden, E. see Osaki, S. 519-525

Gaucher, G. M. see Stevenson, K. J. 527-542

Gedney, C. D., see Ward, P. E. 755-758

Giesow, M. J. An improved method for purifying sialidase 181-183

Gerwig, G. J. see Kamerling, J. P. 491-495

Goll, D. E. see Hammond, K. S. 189-192

Goodgame, D. M. L., Jeeves, I., Reynolds, C. D. & Skapski, A. C. Heavy metal-pyrimidine nucleotide interaction. X-ray structure of a cadmium derivative of cytidine 5'-monophosphate 467-468

Grazi, E. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbaniom intermediate 167-172

Green, M. L. Crystallization of one of the chicken pepsinogens and the derived pepsin 763-764

Green, M. L. see also Llewellyn, J. M. 319-326

Greenwood, C. see Brunori, M. 185-188; Parr, S. R. 51-59

Gutfreund, H. see Boland, M. J. 715-727; Engleborghs, Y. 47-50

Hahn, M. G. see Kaneshiro, C. M. 433-434

Halban, P. A. & Offord, R. E. The preparation of a semisynthetic tritiated insulin with a specific radioactivity of up to 20 curies per millimole 219-225

Hall, D. O. see Mullinger, R. N. 75-83

Hammond, K. S. & Goll, D. E. Purification of insect myosin and α-actinin 189-192

Hancock, I. C. see Lambert, P. A. 671-676

Harford, S. & Weitzman, P. D. J. Evidence for isolated and allosteric nucleotide inhibition of citrate synthase from multiple-inhibition studies 455-458

Harris, J. I. see Allen, G. 747-749

Harwood, J. L., Debai, R., Hext, P., Tetley, T. & Richards, R. Characterization of pulmonary surfactant from ox, rabbit, rat and sheep 707-714

Heinegård, D. see Thyberg, J. 157-166

Herbert, J. A. L. see Sturchbury, T. 417-432

Hext, P. see Harwood, J. L. 707-714

Hickman, P. E. & Weidemann, M. J. The purification and properties of pig spleen phosphofructokinase 327-336

Holloway, M. R. see Osborne, H. H. 37-45

Hooghkinkel, G. J. M. see Overduik, B. 257-261

Idler, W. W. see Steinert, P. M. 603-614

Jackson, P., Amphlett, G. W. & Perry, S. V. The primary structure of troponin T and the interaction with troponymosin 85-97

Jäne, J. see Pồb, H. 67-73

Jayle, M.-F. see Laurent, C. 513-518

Jeeves, I. see Goodgame, D. M. L. 467-468

Jellinck, P. H. see McNabb, T. 275-279

Johnson, C. E. see Mullinger, R. N. 75-83

Johnson, T. C. see Taub, P. 173-180

Jones, M. N. A theoretical approach to the binding of amphipathic molecules to globular proteins 109-114

Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G. & Clamp, J. R. Characterization by gas-liquid chromatography–mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanalysis of glycoproteins and glycopeptides 491-495

Kaneshiro, C. M., Enns, C. A., Hahn, M. D., Peterson, J. S. & Reithel, F. J. Evidence for an active dimer of *Escherichia coli* β-galactosidase 433-434

Keir, H. M. see McLennan, A. G. 227-238, 239-247

Kellie, A. E. see Samarajewa, P. 369-376

Kido, R. see Noguchi, T. 399-406

Kition, T. M. The effect of disulfiram on the aldehyde dehydrogenases of sheep liver 407-412

Lambert, P. A., Hancock, I. C. & Baddiley, J. Influence of alanyi ester residues on the binding of magnesium ions to tioic acids 671-676

Lapresle, C. & Doyen, N. Isolation and properties of a fragment of human serum albumin demonstrating the absence of a methionine residue from some of the albumin molecules 637-643

Lara, F. J. S. & Okretic, M. C. A micro-method for the assay of polyadenylate-containing ribonucleic acid by gel electrophoresis 575-580

Letarte-Murhead, M., Barclay, A. N. & Williams, A. F. Purification of the Thy-1 molecule, a major cell-surface glycoprotein of rat thymocytes 685-697

Letarte-Murhead, M. see also Barclay, A. N. 699-706

Llewellyn, J. M. & Green, M. L. The effect of acid proteinase inhibitors on chicken pepsin 319-326

Loder, B. see Ushir, J. J. 729-739

Lohmander, S. see Thyberg, J. 157-166

Laurens, J. M. F. see de St. Joris, A. 1975
INDEX OF AUTHORS

ROBINSON, D. see PHILLIPS, N. 469–475
ROBINSON, H. C. see HOPWOOD, J. I. 581–594
RUSH, J. D. see MULLINGER, R. N. 75–83

SAMARAJEWEA, P. & KELLIB, A. E. The radioimmunoassay of steroid glucuronides. The oestrogen C-3 glucuronides as hapten 369–376
SEXTON, R. C. see OSAKI, S. 519–525
SHIPTON, M. see STUCHBURY, T. 417–432
SIDHU, R. S. & BLAIR, A. H. The action of chelating agents on human liver aldehyde dehydrogenase 443–445
SIM, E., CULLIS, P. R. & RICHARDS, R. E. Physical studies on phosphonium phosphatidylcholine. A unique\[31P]-phosphorus nuclear-magnetic-resonance probe for model and biological membranes 555–560
SIMMONDS, R. J. see YON, R. J. 281–290
SIMPOULOS, A. see Mullinger, R. N. 75–83
SINERVIRTA, R. see POHLO, H. 67–73
SKAPSNI, A. C. see GOODGAME, D. M. L. 467–468
SOCHER, S. see KRALL, J. F. 497–503
STEINERT, P. M. & IDLER, W. W. The polypeptide composition of bovine epidermal \(\alpha \)-keratin 603–614
STEVENSON, F. K., MOLE, L. E., RAYMONT, C. M. & STEVENSON, G. T. A \(\beta \)-Bence-Jones protein in guinea pigs 751–753
STEVENSON, G. T. see STEVENSON, F. K. 751–753
STEVENSON, K. J. & GAUCHER, G. M. The substrate specificity of thermolyase, an extracellular serine proteinase from the thermophilic fungus \(\text{Malbranchea pulchella var. sulfurea} \) 527–542
STORER, A. C., DARLINGTON, M. G. & CORNISH-BOWDEN, A. The nature of experimental error in enzyme kinetic measurements 361–367
STUCHBURY, T., SHIPTON, M., NORRIS, R., MALTHOUSE, J. P. G., BROCKLEHURST, K., HERBERT, J. A. L. & SUSCHITZKY, H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety 417–432
SUSCHITZKY, H. see STUCHBURY, T. 417–432

Taub, F. & Johnson, T. C. The mechanism of polyribosome disaggregation in brain tissue by phenylalanine 173–180
TETLEY, T. see HARWOOD, J. L. 707–714
THIMMAPAYA, B. & CHERAYIL, J. D. Isoaccepting lysine transfer ribonucleic acid species of \(\text{Pseudomonas aeruginosa} \) 377–386
THOMAS, P. see EDWARDS, R. G. 145–148

Usher, J. J. see FAWCETT, P. A. 741–746

Van, N. T. see KRALL, J. F. 497–503
Van der Kroef, W. M. J. see Overdijk, B. 257–261
Van Doorn, A. B. D. see MULDER, G. J. 131–140
VAUGHAN, P. F. T. & McIntyre, R. J. The action of hydrogen peroxide on the hydroxylation of \(\text{p} \)-coumaric acid by spinach-beet phenolase 759–762
VELTKAMP, W. A. see OVERDijk, B. 257–261
VERBUGGEN, R. Subtilopeptidase A isoenzyme system. Interaction with serum components and its importance for quantitative immunoelectrophoresis 149–155
VLEGENTHART, J. F. G. see KAMERLING, J. P. 491–495

WAHNELDT, T. V. Ontogenetic study of a myelin-derived fraction with \(\text{2':3':5'} \)-cyclic nucleotide \(\text{3'} \)-phosphohydrolase activity higher than that of myelin 435–437
WEIDEMANN, M. J. see HICKMAN, P. E. 327–336
WEITZMAN, P. D. J. see HARFORD, S. 455–458
WEBB, Z. & REYNOLDS, J. J. Immunochemical studies with a specific antisera to rabbit fibroblast collagenase 655–663
WEBB, Z. & REYNOLDS, J. J. Purification and properties of a specific collagenase from rabbit synovial fibroblasts 645–653
WEBB Z. & REYNOLDS, J. J. Rabbit collagenase. Immuno- logical identity of the enzymes released from cells and tissues in normal and pathological conditions. 665–669
WESTWOOD, J. H. see EDWARDS, R. G. 145–148
WHEELER, K. P. see WALKER, J. A. 439–442
WHITTENBURY, R. see COLBY, J. 459–462
WILD, D. G. see MARKEY, F. 463–465
WILLIAMS, A. F. see LETART–Muirhead, M. 685–697; 699–706
WILSON, M. T. see BRUNORI, M. 185–188; PARR, S. R. 51–59
WINCHESTER, B. see PHILLIPS, N. 469–475
WINZOR, D. J. see BRINKWORTH, R. 631–636; DON, M. M. 625–630

YAMAGUCHI, I. \(\text{Oplophorus} \) oxyluciferin and a model luciferin compound biologically active with \(\text{Oplophorus} \) luciferase 9–15
YON, R. J. & SIMMONDS, R. J. Protein chromatography on adsorbs with hydrophobic and ionic groups. Some properties of \(\text{N}(3\text{-carboxypropionyl}) \text{laminode}-\text{Sepharose and its interaction with wheat-germ aspartate transcarbamoylase} \) 281–290
YUNG, K.-H. & NORTHCO, D. H. Some enzymes present in the walls of mesophyll cells of tobacco leaves 141–144

Zuretti, M. F. see BACCINO, F. M. 567–573
Index of Subjects

β-N-Acetylgalactosaminidase, purification and properties of β-N-acetylhexosaminidase with activity of β-N-acetylglucosaminidase and, from Trichomonas foetus (Edwards, R. G., Thomas, P. & Westwood, J. H.) 145–148

β-N-Acetylglucosaminidase, purification and properties of β-N-acetylhexosaminidase with activity of β-N-acetylglucosaminidase and, from Trichomonas foetus (Edwards, R. G., Thomas, P. & Westwood, J. H.) 145–148

β-N-Acetylhexosaminidase, purification and properties of, from Trichomonas foetus (Edwards, R. G., Thomas, P. & Westwood, J. H.) 145–148

Acid α-d-mannosidase, see α-d-Mannosidase, acid

Acid phosphatase, see Phosphatase, acid

Acid proteinase, see Proteinase, acid

α-Actinin, purification of myosin, tropomyosin and, from water-bug and dung-beetle flight muscle (Hammond, K. S. & Goll, D. E.) 189–192

Adenosine triphosphatase, sodium-plus-potassium ion-dependent, microsomal, salt-gland, dogfish, solubilized, reversible delipidation of (Ottolenghi, P.) 61–66

S-Adenosylmethionine decarboxylase, purification and properties of, from baker’s yeast (Pőső, H., Sinervirta, R. & Jänne, J.) 67–73

Alanine ester residues, influence of, on the binding of magnesium ions to teichoic acids from Staphylococcus aureus H cell wall (Lambert, P. A., Hancock, I. C. & Baddiley, J.) 671–676

Albumin, plasma, capuchin-monkey, role of, in the transport of 25-hydroxycholecalciferol (Hay, A. W. M.) 193–196

Albumin, serum, capuchin monkey, role of, in the transport of 25-hydroxycholecalciferol (Hay, A. W. M.) 193–196

Albumin, serum, human, isolation and properties of a fragment of, demonstrating the absence of a methionine residue from some of the molecules (Lapresle, C. & Doyen, N.) 637–643

Albumin, serum, ox, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 4-(N-2-aminoethyl 2′-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole with thiol groups of, and other proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Albumin, serum, ox, theoretical approach to the binding of amphipathic molecules to, and other globular proteins (Jones, M. N.) 109–114

Aldehyde dehydrogenase, liver, human, inhibition by chelating agents of the activity of (Sidhu, R. S. & Blair, A. H.) 443–445

Aldehyde dehydrogenases, cytoplasmic and mitochondrial, liver, sheep, effects of disulfram on the activities of (Kitson, T. M.) 407–412

Aldolase, see Fructose 1,6-diphosphate aldolase

Alkaline phosphatase, see Phosphatase, alkaline

Allotypes Aa1 and Aa3, amino acid sequence of the constant region of Fd fragments of the heavy chain of rabbit immunoglobulin G of (Pratt, D. M. & Mole, L. E.) 337–349

Allotypes Aa1 and Aa3, demonstration of a genetic marker in the amino acid sequence of the variable region of the heavy chain of rabbit immunoglobulin G of (Mole, L. E.) 351–359

Amino acid compositions of different molecular species of collagen from pig fibrous, elastic and hyaline cartilages (Eyre, D. R. & Muir, H.) 595–602

Amino acid sequence of Staphylococcus aureus N.C.I.B. 11195 penicillinase (Ambler, R. P.) 197–218

Amino acid sequence of the constant region of Fd fragments of the heavy chain of rabbit immunoglobulin G of allotypes Aa1 and Aa3 (Pratt, D. M. & Mole, L. E.) 337–349

Amino acid sequence of the variable region of the heavy chain of rabbit immunoglobulin G of allotypes Aa1 and Aa3, demonstration of a genetic marker in (Mole, L. E.) 351–359

4-(N-2-Aminoethyl 2′-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and, with thiol groups of proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

6-Aminopenicillanic acid, behaviour of tritium-labelled isopenicillin N and, as potential penicillin precursors in an extract of Penicillium chrysogenum (Fawcett, P. A., Usher, J. J. & Abraham, E. P.) 741–746

6-Aminopenicillanic acid, synthesis of tritium-labelled isopenicillin N, penicillin N and (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

α-Amylases, immunochemical relationship between, of rat liver, serum, pancreas and parotid gland (Messer, M. & Dean, R. T.) 17–22

Antigens, use of, in the characterization of Thy-1 glycoprotein purified from rat brain membranes (Barclay, A. N., Letarte-Muirhead, M. & Williams, A. F.) 699–706

Antigens, use of, in the characterization of Thy-1 glycoprotein purified from rat thymocyte membranes (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697

Vol. 151
INDEX OF SUBJECTS

Cells, synovial-fibroblast, rabbit, cultured, purification and properties of a specific collagenase from (Werb, Z. & Reynolds, J. J.) 645–655

Cerebellum, mouse, neonatal, mechanism of the disagggregation by phenylalanine of polyribosymes in, and cerebral cortex (Taub, F. & Johnson, T. C.) 173–179

Cerebral cortex, mouse, neonatal, mechanism of the disagggregation by phenylalanine of polyribosymes in, and cerebellum (Taub, F. & Johnson, T. C.) 173–179

Cerebral cortex, ox, abnormal gel-filtration behaviour of \(\beta \)-N-acetyl-D-glucosaminidase from (Overdijk, B., van der Kroef, W. M. J., Veltkamp, W. A. & Hooghkinkel, G. J. M.) 257–261

Chick, resistance to nucleases of chromatin deoxyribonucleic acid from the oviduct of (Krall, J. F., Socher, S. H., Van, N. T. & O'Malley, B. W.) 497–503

Chicken, crystallization of one of the pepsinogens from, and of the derived pepsin (Green, M. L.) 763–764

Chick, effects of inhibitors of acid proteinases on the activity of pepsin from (Llewellyn, J. M. & Green, M. L.) 319–326

Chicken egg, oxidation of ferrous iron and the formation of transferrin from apotransferrin catalysed by egg-yolk phosvitin from (Osaki, S., Sexton, R. C., Pascual, E. & Frieden, E.) 519–525

4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole, absolute, 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole, absolute and selective specificity of the reactions of the fluorescent compounds 4-(N-2-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole and, with thiol groups of proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Cholecalciferol, 25-hydroxy-, transport of, in the plasma of the capuchin monkey (Hay, A. W. M.) 193–196

Choline dehydrogenase, mitochondrial, liver, rat, reaction of, with some electron acceptors (Barrett, M. C. & Dawson, A. P.) 677–683

Chondroitin sulphate B, Flavobacterium heparinum A.T.C.C. 13125, isolation of a dodecasaccharide from, that is susceptible to chondroitinase AC from the same species (Michelacci, Y. M. & Dietrich, C. P.) 121–129

Chondroitin sulphate, differences in the distribution of units containing iduronic acid and glucuronic acid in soluble and cell-associated co-polymers of dermatan sulphate and, produced by cultured human fibroblasts (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477–489

Chondroitin sulphate, identification of polydispersity in, in three ox nasai-septum cartilage proteoglycans (Hopwood, J. J. & Robinson, H. C.) 581–594

Chondroitinase AC, Flavobacterium heparinum A.T.C.C. 13125, isolation of a dodecasaccharide from chondroitin B that is susceptible to (Michelacci, Y. M. & Dietrich, C. P.) 121–129

Chromatin, oviduct, chick, resistance to nucleases of deoxyribonucleic acid of (Krall, J. F., Socher, S. H., Van, N. T. & O'Malley, B. W.) 497–503

Chymosin, calf, inhibition by 1,2-epoxy-3-(p-nitrophenoxy)propane of the activities of chicken pepsin and (Llewellyn, J. M. & Green, M. L.) 319–326

\(\alpha \)-Chymotrypsin, ox, nature of experimental error in kinetic measurements of reactions catalysed by, and other enzymes (Storer, A. C., Darlisson, M. G. & Cornish-Bowden, A.) 361–367

Citrate synthase, evidence from multiple-inhibition studies for isosteric and allosteric inhibition by nucleotides of the activity of, from pig heart, Bacillus megaterium and Pseudomonas aeruginosa (Harford, S. & Weitzman, P. D. J.) 455–458

Clostridium perfringens, use of affinity chromatography in an improved method for the purification of sialidase from (Geosow, M. J.) 181–183

Colchicine, radioimmunoassay of (Boudene, C., Duprey, F. & Bohuon, C.) 413–415

Collagen, distribution of different molecular species of, in pig fibrous, elastic and hyaline cartilages (Eyre, D. R. & Muir, H.) 595–602

Collagenase, specific, purification and properties of, from cultured rabbit synovial fibroblasts (Werb, Z. & Reynolds, J. J.) 645–653

Collagenase, synovial-fibroblast, rabbit, immunochemical studies with a specific antiserum to (Werb, Z. & Reynolds, J. J.) 655–663

Collagenase, synovial-fibroblast, rabbit, immunological identity of, with the enzymes released from other rabbit cells and tissues (Werb, Z. & Reynolds, J. J.) 665–669

Cornea, ox, structure of keratan sulphates from, and other sources (Choi, H. U. & Meyer, K.) 543–553

Corpus luteum, ox, properties of adenosine 3':5'-cyclic monophosphate-dependent protein kinases associated with the plasma membrane of (Azhar, S. & Menon, K. M. J.) 23–36

p-Coumarate, action of hydrogen peroxide on the hydroxylation of, by spinach-leaf phenolase (Vaughan, P. F. T. & McIntyre, R. J.) 759–762

Creatine kinase, skeletal-muscle, rabbit, quenched-flow study of the reaction catalysed by (Engelborghs, Y., Marsh, A. & Gutfreund, H.) 47–50

2':3'-Cyclic nucleotide phosphohydrolase, ontogenic study of a myelin-derived membrane fraction with higher activity of, than that of the parent myelin from rat forebrain (Waehnelt, T. V.) 435–437

Cytidine 5'-monophosphate, X-ray determination of the structure of a cadmium derivative of (Goodgame, D. M. L., Jeeves, I., Reynolds, C. D. & Skapski, A. C.) 467–468

Cytochrome c-551 oxidase, Pseudomonas aeruginosa N.C.T.C. 6750, reaction of carbon monoxide with (Parr, S. R., Wilson, M. T. & Greenwood, C.) 51–59

Cytochrome c-551 oxidase, Pseudomonas aeruginosa N.C.T.C. 6750, temperature-jump study of the reaction between, and azurin (Brunori, M., Parr, S. R., Greenwood, C. & Wilson, M. T.) 185–188

Cytosol, liver, sheep, effects of disulfiram on the activities of aldehyde dehydrogenases from, and mitochondria (Kitson, T. M.) 407–412

Deoxyribonuclease, exo-, spleen, pig, role of apurinic sites in the resistance of methylated oligodeoxyribonucleotides to degradation by (Margison, G. P., others) 249–256

Deoxyribonuclease, acrylamide, chromatin, oviduct, chick, resistance to nuclease of (Krall, J. F., Socher, S. H., Van, N. T. & O'Malley, B. W.) 497–503

Deoxyribonucleic acid, nuclear, liver, rat, effects of polyanimes and methylglyoxal bis(guanihydrazine) on the template activity of (Brown, K. B., Nelson, N. F. & Brown, D. G.) 505–512
Deoxyribonucleic acid polymerases, high molecular-weight, two, purification and properties of, from Euglena gracilis (McLennan, A. G. & Keir, H. M.) 227-238

Deoxyribonucleic acid polymerases, high-molecular-weight, two, utilization of primer template by and enzyme activities associated with, from Euglena gracilis (McLennan, A. G. & Keir, H. M.) 239-247

Dermatan sulphate, differences in the distribution of units containing iduronic acid and glucuronic acid in soluble and cell-associated co-polymers of chondroitin sulphate and, produced by cultured human fibroblasts (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477-489

Diazaoctyl-norleucine methyl ester, effects of, and other inhibitors of acid proteinases on the activity of chicken pepsin (Llewellyn, J. M. & Green, M. L.) 319-326

2-Diazoo-4-bromoacetophenone, effects of, and other inhibitors of acid proteinases on the activity of chicken pepsin (Llewellyn, J. M. & Green, M. L.) 319-326

Dimethyl-(2-hydroxy-5-nitrobenzyl)sulphonium bromide, effects of, and other inhibitors of acid proteinases on the activity of chicken pepsin (Llewellyn, J. M. & Green, M. L.) 319-326

Disulfiram (tetraethylthiuram disulphide), effects of, on the activities of sheep liver cytoplasmic and mitochondrial aldehyde dehydrogenases (Klitson, T. M.) 407-412

Disulphide bridges, interchain, arrangement of, of mouse immunoglobulin M (Milstein, C. P., Richardson, N. E., Deverson, E. V. & Feinstein, A.) 615-624

Dodecasaccharide, isolation of, from Flavobacterium heparinum A.T.C.C 13125 chondroitin sulphate B that is susceptible to chondroitinase AC from the same species (Michelacci, Y. M. & Dietrich, C. P.) 121-129

Dodecyl sulphate, sodium, theoretical approach to the binding of amphipathic molecules such as, to globular proteins (Jones, M. N.) 109-114

Dogfish (Squalus acanthias), reversible delipidation of solubilized microsomal sodium-plus-potassium ion-dependent adenosine triphosphatase from the rectal salt gland of (Ottolenghi, P.) 61-66

Dogfish (Squalus acanthius), reversible reaction of pyridoxal 5'-phosphate with an essential lysine residue of skeletal-muscle lactate dehydrogenase M₄ isoenzyme from (Chen, S.-S. & Engel, P. C.) 447-449

Dung beetle (Heliocopris Jasper), purification of myosin, tropomyosin and α-actinin from the flight muscle of (Hammond, K. S. & Goll, D. E.) 189-192

Egg yolk, chicken, oxidation of ferrous iron and the formation of transferrin from apotransferrin catalysed by phosvitin from (Osaki, S., Sexton, R. C., Pascual, E. & Frieden, E.) 519-525

Elastase, activity of, of the extracellular serine proteinase thermomycin from Malbranchea pulchella var. sulphurea (Stevenson, K. J. & Gaucher, G. M.) 527-542

Electron transport, intramolecular, in human ferrooxidase (De Ley, M. & Osaki, S.) 561-566

Endoplasmic reticulum, see Reticulum, endoplasmic

Endosperm, castor-bean, evidence that the biosynthesis of phosphatidylcholine and phosphorylcholines is catalysed by a single enzyme in the endoplasmic reticulum of (Lord, J. M.) 451-453

Enzymes, nature of experimental error in kinetic measurements of reactions catalysed by (Storer, A. C., Darlison, M. G. & Cornish-Bowden, A.) 361-367

Epidermis, ox, characterization of the polypeptide chains of keratin from (Steinert, P. M. & Idler, W. W.) 603-614

1,2-Epoxo-3-(p-nitrophenoxyl)propene, effects of, and other inhibitors of acid proteinases on the activity of chicken pepsin (Llewellyn, J. M. & Green, M. L.) 319-326

Escherichia coli, accumulation of a 30S precursor of 30S ribosomes in a mutant of (Marky, F. & Wild, D. G.) 463-465

Escherichia coli, evidence for an active dimer of β-galactosidase from (Kaneshiro, C. M., Enns, C. A., Hahn, M. G., Peterson, J. S. & Reithel, F. J.) 433-434

Estradiol, see Oestradiol

Estradiol-17β, see Oestradiol-17β

Estradiol, see Oestradiol

Estradiol-17β, see Oestradiol-17β

Estrone, see Oestrone

Euglena gracilis, purification and properties of two distinct high-molecular-weight deoxyribonucleic acid polymerases from (McLennan, A. G. & Keir, H. M.) 227-238

Euglena gracilis, utilization of primer template by and enzyme activities associated with two high-molecular-weight deoxyribonucleic acid polymerases from (McLennan, A. G. & Keir, H. M.) 239-247

Exodeoxyribonuclease, spleen, pig, role of apurinic sites in the resistance of methylated oligodeoxyribonucleotides to degradation by (Margison, G. P., O'Connor, P. J. & Cornish-Bowden, A.) 249-256

Ferredoxin, four-iron–four-sulphide, Bacillus stearothermophilus, physicochemical characterization of (Mullinger, R. N., Cammack, R., Rao, K. K., Hall, D. O., Dickson, D. P. E., Johnson, C. E., Rush, J. D. & Simopoulos, A.) 75-83

Ferrous iron, oxidation of, and the formation of transferrin from apotransferrin catalysed by chicken egg-yolk phosvitin (Osaki, S., Sexton, R. C., Pascual, E. & Frieden, E.) 519-525

Ferrioxidase, human, intramolecular electron transport in (De Ley, M. & Osaki, S.) 561-566

Ferrodoxin, role of, and phosvitin and transferrin in the mobilization and transfer of iron in the chicken (Osaki, S., Sexton, R. C., Pascual, E. & Frieden, E.) 519-525

Fibroblasts, human, cultured, differences in the distribution of units containing iduronic acid and glucuronic acid in soluble and cell-associated dermatan sulphate–chondroitin sulphate co-polymers produced by (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477-489

Fibroblasts, synovial, rabbit, cultured, immunochemical studies with a specific antiserum to collagenase from (Werb, Z. & Reynolds, J. J.) 655-663

Fibroblasts, synovial, rabbit, cultured, immunological identity of the collagenase from, with the enzymes released from other rabbit cells and tissues (Werb, Z. & Reynolds, J. J.) 665-669

INDEX OF SUBJECTS

1975
Fibroblasts, synovial, rabbit, cultured, purification and properties of a specific collagenase from (Werb, Z. & Reynolds, J. J.) 645–653

Ficin, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 4-(N-2-aminoethyl 2'-pyridyl di-sulphide)-7-nitrobenzo-2-oxa-1,3-diazole with thiol groups of, and other proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brockleshurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Flavobacterium hparinum A.T.C.C. 13125, isolation of a dodecacaraccharide from chondroitin sulphate B from, that is susceptible to chondroitinase AC from the same species (Michelacci, Y. M. & Dietrich, C. P.) 121–129

Flight muscle, see Muscle, flight

Fly (Rynchosciara americana) larva, gel-electrophoretic analysis of salivary-gland messenger ribonucleic acid from (Lara, F. J. S. & Okretic, M. C.) 575–580

α-Foetoprotein, rat, comparison of the oestradiol-17β-binding specificities of rat liver 17β-hydroxy steroid dehydrogenase, anti(oestradiol-6-carboxymethylxime–bovine serum albumin) serum and (Laurent, C., de Lauzon, S., Cittanova, N., Nunez, E. & Jays, M. F.) 513–518

Forebrain, rat, ontogenic study of a myelin-derived membrane fraction with higher activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase than that of the parent myelin from (Waehneldt, T. V.) 435–437

Fructose 1,6-diphosphate aldolase, skeletal-muscle, rabbit, effect of pH on the rate of formation and on the equilibrium concentration of the carbonian intermediate formed in the reaction catalysed by (Grazi, E.) 167–172

β-Galactosidase, Escherichia coli, evidence for an active dimer of (Kaneshiro, A., Hahn, M. G., Peterson, J. S. & Reithel, F. J.) 433–434

β-Galactosidase, liver, rat, stimulation by ions of the activity of (Baccino, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573

Glucokinase, liver, rat, nature of experimental error in kinetic measurements of reactions catalysed by, and other enzymes (Storer, A. C., Darlisone, M. G. & Cornish-Bowden, A.) 361–367

Glucuronic acid, differences in the distribution of units containing iduronic acid and, in soluble and cell-associated dermatan sulphate–chondroitin sulphate co-polymers produced by cultured human fibroblasts (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477–489

Glutamate dehydrogenase, liver, ox, kinetics of the product inhibition of (Engel, P. C. & Chen, S.-S.) 305–318

Glyceraldehyde 3-phosphate dehydrogenase, Bacillus stearothermophilus, binding of oxidized nicotinamide–adenine dinucleotide to (Allen, G & Harris, J. I.) 747–749

Glyceraldehyde 3-phosphate dehydrogenases, baker’s yeast and skeletal-muscle, rabbit, investigation of substrate–induce changes in subunit interactions in, by measurement of the kinetics and thermodynamics of subunit exchange (Osborne, H. H. & Holloway, M. R.) 37–45

Glycoproteins, characterization by gas–liquid chromatography–mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanalysis of glycoproteins and (Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G. & Clamp, J. R.) 491–495

Glycoprotein, Thy-1, purification and characterization of, from rat brain membranes (Barclay, A. N., Letarte-Muirhead, M. & Williams, A. F.) 699–706

Glycoprotein, Thy-1, purification and characterization of, from rat thymocyte membranes (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697

Glycoproteins, characterization by gas–liquid chromatography–mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanalysis of glycoproteins and (Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G. & Clamp, J. R.) 491–495

Glycosaminoglycans, soluble and cell-associated, differences in the distribution of units containing iduronic acid and glucuronic acid in, produced by cultured human fibroblasts (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477–489

Glycosaminoglycans, structural variations in, from various sources (Choi, H. U. & Meyer, K.) 543–553

Heart, mouse, evaluation by affinity chromatography of the equilibrium constants for the interaction of reduced nicotinamide–adenine dinucleotide with lactate dehydrogenase isoenzymes from, and other tissues (Brinkworth, R. I., Masters, C. J. & Winzor, D. J.) 631–636

Heart muscle, rabbit, phosphorylation of light-chain components of myosin from, and red skeletal muscle (Frearson, N. & Perry, S. V.) 99–107

Heart, pig, binding of pyruvate to lactate dehydrogenase from, and the interconversion of pyruvate-containing ternary complexes (Boland, M. J. & Gutfreund, H.) 715–727

Heart, pig, evidence from multiple-inhibition studies for isosterie and allosteric inhibition by nucleotides of the activity of citrate synthases from, and other sources (Harford, S. & Weitzman, P. D. J.) 455–458

Heart, pig, reversible modification by pyridoxal 5'-phosphate of mitochondrial malate dehydrogenase from (Chen, S.-S. & Engel, P. C.) 297–303

Heavy chain, immunoglobulin G, rabbit, amino acid sequence of the constant region of Fd fragments of, of allotopes Aa1 and Aa3 (Pratt, D. M. & Mole, L. E.) 337–349

Heavy chain, immunoglobulin G, rabbit, demonstration of a genetic marker in the amino acid sequence of, of allotopes Aa1 and Aa3 (Mole, L. E.) 351–359

Heavy chains, immunoglobulin M, mouse, arrangement of the disulphide bridges linking, and light chains (Milstein, C. P., Richardson, N. E., Deverson, E. V. & Feinstei, A.) 615–624

Helicoporis japetus, see Dung beetle

Hen, see Chicken

Hormones, peptide, nomenclature of (IUPAC–IUB Commission on Biochemical Nomenclature) 1–4

Hyaline cartilage, see Cartilage, hyaline

Vol. 151

INDEX OF SUBJECTS

773
Hydrogen isotope (H), semi-synthesis of pig insulin labelled with, with a specific radioactivity of up to 20 curies per millimole (Halban, P. A. & Offord, R. E.) 219–225

Hydrogen isotope (3H), synthesis of isopenicillin N, penicillin N and 6-aminopenicillanic acid labelled with (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

Hydrogen peroxide, action of, on the hydroxylation of p-coumarate by spinach-beet phenolase (Vaughan, P. F. T. & McIntyre, R. J.) 759–762

25-Hydroxycholecalciferol, transport of, in the plasma of the capuchin monkey (Hay, A. W. M.) 193–196

3-Hydroxy-2-methylimidazo[1,2-a]pyridine, chemical synthesis of, and its biological activity as a model luciferin compound with luciferase from the bioluminescent shrimp Oplophorus gracilorostris (Yamaguchi, I.) 9–15

Iduronic acid, differences in the distribution of units containing glucuronic acid and, in soluble and cell-associated dermatan sulphate–chondroitin sulphate co-polymers produced by cultured human fibroblasts (Malmström, A., Carlstedt, I., Åberg, L. & Fransson, L.-Å.) 477–489

Immunoglobulin G, rabbit, amino acid sequence of the constant region of Fd fragments of the heavy chain of, of allotypes Aa1 and Aa3 (Pratt, D. M. & Mole, L. E.) 337–349

Immunoglobulin G, rabbit, demonstration of a genetic marker in the amino acid sequence of the variable region of the heavy chain of, of allotypes Aa1 and Aa3 (Mole, L. E.) 351–359

Immunoglobulin M, mouse, arrangement of the interchain disulphide bridges of (Milstein, C. P., Richardson, N. E., Deverson, E. V. & Feinstein, A.) 615–624

Immunoglobulins, interaction of the subtilopeptidase A isoenzyme system with, and other serum components and its importance for quantitative immunoelectrophoresis (Verbruggen, R.) 149–155

Insulin, pig, 3H-labelled, semi-synthesis of, with a specific radioactivity of up to 20 curies per millimole (Halban, P. A. & Offord, R. E.) 219–225

Intestine, small, calf, affinity-chromatographic purification of alkaline phosphatase from mucosa of (Brenna, O., Perrella, M., Pace, M. & Pietta, P. G.) 291–296

Intestine, small, rat, purification and characterization of kynurenine–2-oxoglutarate aminotransferases from, and other tissues (Noguchi, T., Minatogawa, Y., Okuno, E., Nakatani, M., Morimoto, M. & Kido, R.) 399–406

Irons, stimulation by, of the activity of rat liver β-galactosidase (Baccino, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573

Iron, ferrous, oxidation of, and the formation of transferrin from transferrin catalysed by chicken egg-yolk phosphitin (Osaki, S., Sexton, R. C., Pascual, E. & Frieden, E.) 519–523

Isopenicillin N, behaviour of tritium-labelled 6-aminopenicillanic acid and, as potential penicillin precursors in an extract of Penicillium chrysogenum (Fawcett, P. A., Usher, J. J. & Abraham, E. P.) 741–746

Isopenicillin N, synthesis of tritium-labelled 6-aminopenicillanic acid, penicillin N and (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

Keratan sulphates, structure of, from various sources (Choi, H. U. & Meyer, K.) 543–553

α-Keratin, epidermal, αx, characterization of the polypeptide chains of (Steinert, P. M. & Idler, W. E.) 603–614

Kidney, mouse, evaluation by affinity chromatography of the equilibrium constants for the interaction of reduced nicotinamide–adenine dinucleotide with lactate dehydrogenase isoenzymes from, and other tissues (Brinkworth, R. J., Masters, C. J. & Winzor, D. J.) 631–636

Kynurenine–2-oxoglutarate aminotransferases, purification and characterization of, from rat liver, brain and small intestine (Noguchi, T., Minatogawa, Y., Okuno, E., Nakatani, M., Morimoto, M. & Kido, R.) 399–406

β-Lactamase, Staphylococcus aureus N.C.I.B. 11195, amino acid sequence of (Ambler, R. P.) 197–218

Lactate dehydrogenase, heart, pig, binding of pyruvate to, and the interconversion of pyruvate-containing ternary complexes (Boland, M. J. & Gutfreund, H.) 715–727

Lactate dehydrogenase, skeletal-muscle, dogfish, reversible reaction of pyridoxal 5'-phosphate with an essential lysine residue of (Chen, S.-S. & Engel, P. C.) 447–449

Lactate dehydrogenase, skeletal-muscle, heart, liver and kidney, mouse, evaluation by affinity chromatography of the equilibrium constants for the interaction of isoenzymes of, with reduced nicotinamide–adenine dinucleotide (Brinkworth, R. I., Masters, C. J. & Winzor, D. J.) 631–636

β-Lactoglobulin, theoretical approach to the binding of amphipathic molecules to, and other globular proteins (Jones, M. N.) 109–114

Leaves, tobacco, activities and other properties of enzymes in the cell wall of mesophyll cells of (Yung, K.-H. & Northcote, D. H.) 141–144

Lecithin, see Phosphatidylcholine

Leichnerus cardofanum, see Water bug

Leucocytes, polymorphonuclear, rabbit, evidence for immunological non-identity of rabbit synoval-fibroblast collagenase with proteinase from (Werb, Z. & Reynolds, J. J.) 65–669

INDEX OF SUBJECTS

1975
INDEX OF SUBJECTS

Leukaemia, lymphocytic, LαC, identification of a λ Bence-Jones protein in the urine of guinea pigs with (Stevenson, F. K., Mole, L. E., Raymont, C. M. & Stevenson, G. T.) 751–753

Ligand, factorization of the Michaelis functions for the binding of, to a molecule with two binding sites (Dixon, H. B. F.) 271–274

Light chains, immunoglobulin M, mouse, arrangement of the disulphide bridges linking, and heavy chains (Milstein, C. F., Richardson, N. E., Deverson, E. V. & Feinstein, A.) 615–624

Light chains, myosin, heart-muscle and red-skeletal-muscle, rabbit, phosphorylation of (Freaseon, N. & Perry, S. V.) 99–107

Lipid, content of protein and, in pulmonary surfactants from ox, rabbit, rat and sheep (Harwood, J. L., Desai, R., Hext, P., Tetley, T. & Richards, R.) 707–714

Lipid, reversible removal of, from solubilized dogfish salt gland microsomal sodium-plus-potassium ion-dependent adenosine triphosphatase (Ottolenghi, P.) 61–66

Lipomannans, structure and properties of, associated with membranes of various micrococci (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397

Lipoprotein, further evidence that ox plasma alyesterase is, in nature (Don, M. M., Masters, C. J. & Winzor, D. J.) 623–630

Lipo teichoic acids, evidence for the absence of, from Micrococcus lysodeikticus and other micrococci (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397

Liver, human, immunological characterization of acid α-D-mannosidases from (Phillips, N., Robinson, D. & Winchester, B.) 469–475

Liver, human, inhibition by chelating agents of the activity of aldehyde dehydrogenase from (Sidhu, R. S. & Blair, A. H.) 443–445

Liver, mouse, evaluation by affinity chromatography of the equilibrium constants for the interaction of reduced nicotinamide–adenine dinucleotide with lactate dehydrogenase isoenzymes from, and other tissues (Brinckworth, R. I., Masters, C. J. & Winzor, D. J.) 631–636

Liver, ox, kinetics of the product inhibition of glutamate dehydrogenase from (Engel, P. C. & Chen, S.-S.) 305–318

Liver, rat, effects of polyamines and methylglyoxal bis-(guanilyl)azine on nuclear structure and deoxyribo nucleic acid template activity in (Brown, K. B., Nelson, N. F. & Brown, D. G.) 505–512

Liver, rat, immunoneurochemical relationship between α-amylases of, and serum, pancreas and parotid gland (Messer, M. & Dean, R. T.) 17–22

Liver, rat, purification and characterization of kynurenic–2-oxoglutarate aminotransferase from, and other tissues (Noguchi, T., Minatogawa, Y., Okuno, E., Nakatani, M., Morimoto, M. & Kido, R.) 399–406

Liver, rat, rapid nicotinamide–adenine dinucleotide– linked method for the assay of the activity of microsomal uridine diphosphate glucuronosyltransferase from, and the substrate specificity of the enzyme (Mulder, G. J. & Van Doorn, A. B. D.) 131–140

Liver, rat, reaction of mitochondrial choline dehydrogenase from, with some electron acceptors (Barrett, M. C. & Dawson, A. P.) 677–683

Liver, rat, stimulation by ions of the activity of β-galactosidase in (Baccino, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573

Liver, sheep, effects of disulfiram on the activities of the cytoplasmic and mitochondrial aldehyde dehydrogenases from (Kitson, T. M.) 407–412

Luciferase, bioluminescent-shrimp (Oplophorus gracilostri s), activity of, with purified oxyluciferin from the same organism and with a chemically synthesized model luciferin compound (Yamaguchi, I.) 9–15

Luciferin, purification and properties of, from the bioluminescent shrimp Oplophorus gracilostri s and the chemical synthesis of a model luciferin compound biologically active with luciferase from the same organism (Yamaguchi, I.) 9–15

Lung, ox, rabbit, rat and sheep, characterization of pulmonary surfactants from (Harwood, J. L., Desai, R., Hext, P., Tetley, T. & Richards, R.) 707–714

Lysine residue, essential, reversible interaction of pyridoxal 5'-phosphate with, of pig heart mitochondrial malate dehydrogenase (Chen, S.-S. & Engel, P. C.) 297–303

Lysine residue, essential, reversible reaction of pyridoxal 5'-phosphate with, of dogfish skeletal-muscle lactate dehydrogenase M, isoenzyme (Chen, S.-S. & Engel, P. C.) 447–449

Lysine transfer ribonucleic acid, demonstration of two isoaccepting species of, in Pseudomonas aeruginosa (Thimmappaya, B. & Cherayil, J. D.) 377–386

Lysosomes, liver, rat, stimulation by ions of the activity of β-galactosidase in (Baccino, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573

Macroglobulin, see Immunoglobulin M

Magnesium chloride, stimulation by and other salts of the activity of rat liver β-galactosidase (Baccino, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573

Magnesium ions, influence of alanine ester residues on the binding of, to teichoic acids from Staphylococcus aureus H cell wall (Lambert, P. A., Hancock, I. C. & Baddiley, J.) 671–676

Malate dehydrogenase, mitochondrial, heart, pig, reversible interaction of pyridoxal 5'-phosphate with an essential lysine residue of (Chen, S.-S. & Engel, P. C.) 297–303

Macbranche pulchella var. sulfurea, substrate specificity of the extracellular serine proteinase thermomycolin from (Stevenson, K. J. & Gaucher, G. M.) 527–542

Mammary gland, rabbit, purification and properties of 6-phosphogluconate dehydrogenase from (Betts, S. A. & Mayer, R. J.) 263–270

α-D-Mannosidases, acid, liver, human, immunological characterization of (Phillips, N., Robinson, D. & Winchester, B.) 469–475

Membrane fraction, myelin-derived, forebrain, rat, ontogenetic study of, with higher activity of β:3'-cyclic nucleotide 3'-phosphohydrolase than that of the parent myelin (Waehneldt, T. V.) 435–437

Vol. 151
Membranes, plasma, corpus luteum, ox, properties of adenosine 3':5'-cyclic monophosphate-dependent protein kinases associated with (Azhar, S. & Menon, K. M.J.) 23–36
Membranes, brain, rat, purification and characterization of Thy-1 glucoprotein from (Barclay, A. N., Letarte-Muirhead, M. & Williams, A. F.) 699–706
Membranes, micrococal, structure and properties of lipomannans associated with (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397
Membranes, model and biological, physical properties of phosphonium phosphatidylcholine and its suitability as a 31P nuclear-magnetic-resonance probe for (Sim, E. Cullis, P. R. & Richards, R. E.) 555–560
Membranes, thymocyte, rat, purification and characterization of Thy-I glucoprotein from (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697
Messenger ribonucleic acid, see Ribonucleic acid, messenger

Methane mono-oxygenase, properties of, from Methylo-
monas methanica (Colby, J., Dalton, H. & Whittenbury, R.) 459–462

Menitione residue, isolation and properties of a fragment of human serum albumin demonstrating the absence of, from some of the molecules (Lapresle, C. & Doyen, N.) 637–643

Methyl bromide, see Bromomethane

Methylglyoxal bis(guanylylhydrazone) 1,1'-[(methylene-
anediylidene)di(ethylene)diguanidine), effects of poly-
amines and, on rat liver nuclear structure and deoxyribonucleic acid template activity (Brown, K. B., Nelson, N. F. & Brown, D. G.) 505–512

Methylomonas methanica, properties of methane mono-
oxynase from (Colby, J., Dalton, H. & Whittenbury, R.) 459–462

Michaelis functions, factorization of, for the binding of a ligand to a molecule with two binding sites (Dixon, H. B. F.) 271–274

Micrococccus flauus N.C.I.B. 8166, structure and properties of lipomannans associated with membranes of, and other micrococi (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397

Micrococccus lysodeikticus A.T.C.C. 4698 and N.C.I.B. 9278, structure and properties of lipomannans associated with membranes of, and other micrococi (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397

Micrococcus sodonensis N.C.I.B. 8854, structure and properties of lipomannans associated with membranes of, and other micrococi (Powell, D. A., Duckworth, M. & Baddiley, J.) 387–397

Microsomal fraction, liver, rat, rapid nicotinamide–
adene dinucleotide-linked method for the assay of the activity of uridine diphosphate glucuronyltrans-
ferase from, and the substrate specificity of the enzyme (Mulder, G. J. & Van Doorn, A. B. D.) 131–140

Microsomal fraction, salt-gland, dogfish, reversible de-
lipidation of solubilized sodium-plus-potassium ion-
dependent adenosine triphosphatase from (Ottolenghi, P.) 61–66

Mitochondria, heart, pig, reversible modification by pyridoxal 5'-phosphate of malate dehydrogenase from (Chen, S.-S. & Engel, P. C.) 297–303

Mitochondria, liver, rat, reaction of choline dehydrogenase from, with some electron acceptors (Barrett, M. C. & Dawson, A. P.) 677–683

Mitochondria, liver, sheep, effects of disulphiram on the activities of aldehyde dehydrogenases from, and cyto-
plasm (Kitson, T. M.) 407–412

Monkey, capuchin, transport of 25-hydroxycholecalciferol in the plasma of (Hay, A. W. M.) 193–196

Mucosa, small-intestine, calf, affinity-chromatographic purification of alkaline phosphatase from (Brenna, O., Perrella, M., Pace, M. & Pietta, P. G.) 291–296

Muscle, flight, water-bug and dung-beetle, purification of myosin, tropomyosin and a-actinin from (Hammond, K. S. & Goll, D. E.) 189–192

Muscle, heart, rabbit, phosphorylation of light-chain components of myosin from, and red skeletal muscle (Frearson, N. & Perry, S. V.) 99–107

Muscle, skeletal, dogfish, reversible reaction of pyridoxal 5'-phosphate with an essential lysine residue of lactate dehydrogenase M4 isoenzyme from (Chen, S.-S. & Engel, P. C.) 447–449

Muscle, skeletal, mouse, evaluation by affinity chromatog-
raphy of the equilibrium constants for the interaction of reduced nicotinamide–adenine dinucleotide with lactate dehydrogenase isoenzymes from, and other tissues (Brinkworth, R. I., Masters, C. J. & Winzor, D. J.) 631–636

Muscle, skeletal, rabbit, effect of pH on the rate of forma-
tion and on the equilibrium concentration of the carba-
nion intermediate formed in the reaction catalysed by fructose 1,6-diphosphate aldolase from (Grazi, E.) 167–172

Muscle, skeletal, rabbit, investigation of substrate-induced changes in subunit interactions in glyceralddehyde 3-
phosphate dehydrogenases from baker's yeast and, by measurement of the kinetics and thermodynamics of subunit exchange (Osborne, H. H. & Hollaway, M. R.) 37–45

Muscle, skeletal, rabbit, primary structure of troponin T from, and its interaction with tropomyosin (Jackson, P., Amphlett, G. W. & Perry, S. V.) 85–97

Muscle, skeletal, rabbit, quenched-flow study of the re-
action catalysed by creatine kinase from (Engelberghs, Y., Marsh, A. & Gutfreund, H.) 47–50

Muscle, skeletal, red, rabbit, phosphorylation of light-
chain components of myosin from, and heart muscle (Frearson, N. & Perry, S. V.) 99–107

Myelin, forebrain, rat, ontogenic study of a myelin derived membrane fraction with higher activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase than that of (Waehneldt, T. V.) 453–437

1975
INDEX OF SUBJECTS

Myosin, heart-muscle and red-skeletal-muscle, rabbit, phosphorylation of light-chain components of (Frearson, N. & Perry, S. V.) 99–107

Myosin, purification of α-actinin, tropomyosin and, from water-bug and dung-beetle flight muscle (Hammond, K. S. & Goll, D. E.) 189–192

Nasal septum, ox, electron-microscopic studies on proteoglycans isolated from hyaline cartilage from, and other sources (Thyberg, J., Lohmander, S. & Heinegård, D.) 157–166

Nasal septum, ox, identification of polydispersity of the chondroitin sulphate component in three proteoglycans from cartilage of (Hopwood, J. J. & Robinson, H. C.) 581–594

Nicotiana tabacum, see Tobacco

Nicotinamide-adenine dinucleotide, oxidized and reduced, investigation of the changes induced by, in subunit interactions in rabbit skeletal-muscle and baker's-yeast glyceraldehyde 3-phosphate dehydrogenases by measurement of the kinetics and thermodynamics of subunit exchange (Osborne, H. H. & Hollaway, M. R.) 37–45

Nicotinamide-adenine dinucleotide, oxidized, binding of, to Bacillus stearothermophilus glyceraldehyde 3-phosphate dehydrogenase (Allen, G. & Harris, J. I.) 747–749

Nicotinamide-adenine dinucleotide, reduced, evaluation by affinity chromatography of the equilibrium constants for the interaction of lactate dehydrogenase iso-enzymes from mouse skeletal muscle, heart, liver and kidney with (Brinkworth, R. I., Masters, C. J. & Winzor, D. J.) 631–636

7-Nitrobenzo-2-oxa-1,3-diazole moiety, absolute and selective specificity of the reactions of fluorescent compounds containing, with thiol groups of proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Nuclei, liver, rat, effects of polyamines and methylglyoxal bis(guanethylhydrazone) on the structure of, and deoxyribonucleic acid template activity (Brown, K. B., Nelzon, N. F. & Brown, D. G.) 505–512

Nuclei, ovudict, chick, resistance to nuclease of chromatin deoxyribonucleic acid of (Krall, J. F., Socher, S. H., Van, N. T. & O'Malley, B. W.) 497–503

Nucleoside diphosphokinase, activity of, associated with one of the two high-molecular-weight deoxyribonucleic acid polymerases of Euglena gracilis (McLennan, A. G. & Keir, H. M.) 239–247

Nucleotides, evidence from multiple-inhibition studies for isosteric and allosteric inhibition by, of the activity of citrate synthases from pig heart, Bacillus megaterium and Pseudomonas aeruginosa (Harford, S. & Weitzman, P. D. J.) 455–458

Nucleus pulposus, pig, structure of keratin sulphates from, and other sources (Choi, H. U. & Meyer, K.) 543–553

Oestradiol-17β-binding proteins, three, comparison of the specificities of (Laurent, C., de Lauzon, S., Cittanova, N., Nunez, E. & Jayle, M.-F.) 513–518

Oestradiol-17β 3-glucuronide, radioimmunoassay of, and other oestrogen glucuronides (Samarajewa, P. & Kellie, A. E.) 369–376

Oestradiol-17β, purification and properties of peroxidase induced by, from rat uterus (McNabb, T. & Jellinck, P. H.) 275–279

Oestradiol 3-glucuronide, radioimmunoassay of, and other oestrogen glucuronides (Samarajewa, P. & Kellie, A. E.) 369–376

Oestrogen glucuronides, radioimmunoassay of (Samarajewa, P. & Kellie, A. E.) 369–376

Oestrogens, purification and properties of peroxidase induced by, from rat uterus (McNabb, T. & Jellinck, P. H.) 275–279

Oestrone 3-glucuronide, radioimmunoassay of, and other oestrogen glucuronides (Samarajewa, P. & Kellie, A. E.) 369–376

Oligodeoxyribonucleotides, methylated, role of apurinic sites in the resistance of, to degradation by pig spleen exodeoxyribonuclease (Margarson, G. P., O'Connor, P. J. & Cornish-Bowden, A.) 249–256

Oplophorus gracilotorris, see Shrimp, bioluminescent

Oviduct, chick, resistance to nuclease of chromatin deoxyribonucleic acid from (Krall, J. F., Socher, S. H., Van, N. T. & O'Malley, B. W.) 497–503

Oxyluciferin, purification and properties of, from the bioluminescent shrimp Oplophorus gracilotorris and the chemical synthesis of a model luciferin compound biologically active with luciferase from the same organism (Yamaguchi, I.) 9–15

Pancreas, rat, immunochemical relationship between α-amylases of, and liver, serum and parotid gland (Messer, M. & Dean, R. T.) 17–22

Papain, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 4-(N-2-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole with thiol groups of, and other proteins (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Parotid gland, rat, immunochemical relationship between α-amylases of, and liver, serum and pancreas (Messer, M. & Dean, R. T.) 17–22

Penicillin, behaviour of tritium-labelled isopenicillnin N and 6-aminopenicillanic acid as precursors of, in an extract of Penicillium chrysogenum (Fawcett, P. A., Usher, J. J. & Abraham, E. P.) 741–746

Penicillin N, synthesis of tritium-labelled 6-aminopenicillanic acid, isopenicillin N and (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

Penicillinae, Staphylococcus aureus N.C.I.B. 11195, amino acid sequence of (Ambler, R. P.) 197–218

Penicillium chrysogenum, behaviour of tritium-labelled isopenicillin N and 6-aminopenicillanic acid as potential penicillin precursors in an extract from (Fawcett, P. A., Usher, J. J. & Abraham, E. P.) 741–746

Pepsin, chicken, crystallization of, and of the pepsinogen from which it is derived (Green, M. L.) 763–764

Pepsin, chicken, effects of inhibitors of acid proteinases on the activity of (Llewellyn, J. M. & Green, M. L.) 319–326

Pepsinogen, chicken, crystallization of, and of the derived pepsin (Green, M. L.) 763–764

Peptide hormones, nomenclature of (IUPAC–IUB Commission on Biochemical Nomenclature) 1–4

Vol. 151

777
Phosphatidylethanolamine, evidence for the lipoprotein nature of the ayl esterase from (Don, M. M., Masters, C. J. & Winzor, D. J.) 625–630
Polyadenylate, micro method for the assay of ribonuclease acid containing, by gel electrophoresis (Lara, F. J. S. & Okretic, M. C.) 575–580
Polyamines, effects of methylglyoxal bis(guanylhydrazone) and, on rat liver nuclear structure and deoxyribonuclease acid template activity (Brown, K. B., Nelson, N. F. & Brown, D. G.) 505–512
Polyamines, effects of, on the activity of purified baker’s-yeast 5-adenosylmethionine decarboxylase (Posó, H., Servirta, R. & Jänne, J.) 67–73
Polymorphonuclear leucocytes, see Leucocytes, polymorphonuclear
Polypeptide chains, characterization of, of ox epidermal α-keratin (Steinert, P. M. & Idler, W. W.) 603–614
Polyribosomes, brain, mouse, neonatal, mechanism of the disaggregation by phenylalanine of (Taub, F. & Johnson, T. C.) 173–179
Polysomes, see Polyribosomes
Potassium chloride, stimulation by, and other salts of the activity of rat liver β-galactosidase (Baccion, F. M., Zuretti, M. F. & Pernigotti, L.) 567–573
Protease, see Proteinase
Protein, Bence-Jones, λ, identification of, in the urine of guinea pigs with L2Clymphocytic leukaemia (Stevenson, F. K., Mole, L. E., Raymont, C. M. & Stevenson, G. T.) 751–753
Protein, content of lipid and, in pulmonary surfactants from ox, rabbit, rat and sheep (Harwood, J. L., Desai, R., Hext, P., Tetley, T. & Richards, R.) 707–714
Protein kinase, skeletal-muscle, rabbit, specific, phosphorylation by, of light-chain components of myosin from rabbit heart muscle and red skeletal muscle (Frearson, N. & Perry, S. V.) 99–107
Protein kinases, adenosine 3′:5′-cyclic monophosphate-dependent, properties of, associated with the plasma membrane of ox corpus luteum (Azhar, S. & Menon, K. M. J.) 23–36
Protein, mechanism of the disaggregation by phenylalanine of polyribosomes in neonatal mouse brain tissue and the consequent disruption of the biosynthesis of (Taub, F. & Johnson, T. C.) 173–179
Proteinase, polymorphonuclear-leucocyte, rabbit, evidence for immunological non-identity of rabbit synovial-fibroblast collagenase with (Werb, Z. & Reynolds, J. J.) 665–669
Proteinase (thermomycolin), serine, extracellular, Malbranchea pulchella var. sulphorea, substrate specificity of (Stevenson, K. J. & Gaucher, G. M.) 527–542
Proteinases, acid, effects of inhibitors of, on the activity of chicken pepsin (Llewellyn, J. M. & Green, M. L.) 319–326
Protein–polysaccharides, see Proteoglycans

1975
INDEX OF SUBJECTS

Proteins, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 4-(N-2-aminoethyl 2'-pyridyldisulphide)-7-nitrobenzo-2-oxa-1,3-diazole with thiol groups of (Stuchbury, T., Shipton, M. N., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Proteins, globular, theoretical approach to the binding of amphipathic molecules to (Jones, M. N.) 109–114

Proteins, oestradiol-17β-binding, three, comparison of the specificities of (Laurent, C., de Lauzon, S., Cittanova, N., Nunez, E. & Jayle, M-F.) 513–518

Proteins, plasma-membrane, corpus luteum, ox, specific, phosphorylation of, by adenosine 3'5'-cyclic monophosphate-dependent protein kinases associated with the plasma membrane (Azhar, S. & Menon, K. M. J.) 23–36

Proteoglycans, cartilage, nasal-septum, ox, three, identification of polydispersity in the chondroitin sulphate component in (Hopwood, J. J. & Robinson, H. C.) 581–594

Proteoglycans, hyaline-cartilage, guinea-pig and ox, isolated, electron-microscopic studies on (Thyberg, J., Lohmander, S. & Heinegård, D.) 157–166

Pseudomonas aeruginosa, demonstration of two isoaccepting species of lysine transfer ribonucleic acid in Thimmapaya, B. & Cherayil, J. D.) 377–386

Pseudomonas aeruginosa, evidence for multiple-inhibition studies for isosteric and allosteric inhibition by nucleotides of the activity of citrate synthases from, and other sources (Harford, S. & Weitzman, P. D. J.) 455–458

Pseudomonas aeruginosa N.C.T.C. 6750, reaction of carbon monoxide with cytochrome c-551 oxidase from (Parr, S. R., Wilson, M. T. & Greenwood, C.) 51–59

Pseudomonas aeruginosa N.C.T.C. 6750, temperature-jump study of the reaction between azurin and cytochrome c-551 oxidase from (Brunori, M., Parr, S. R., Greenwood, C. & Wilson, M. T.) 185–188

Pulmonary surfactants, characterization of, from ox, rabbit, rat and sheep (Harwood, J. L., Desai, R., Hext, P., Tetley, T. & Richards, R.) 707–714

Pyridoxal 5'-phosphate, reversible interaction of, with an essential lysine residue of pig heart mitochondrial malate dehydrogenase (Chen, S.-S. & Engel, P. C.) 297–303

Pyridoxal 5'-phosphate, reversible reaction of, with an essential lysine residue of dogfish skeletal-muscle lactate dehydrogenase M₄ isoenzyme (Chen, S.-S. & Engel, P. C.) 447–449

Pyruvate, binding of, to pig heart lactate dehydrogenase and the interconversion of pyruvate-containing ternary complexes (Boland, M. J. & Gutfreund, H.) 715–727

Ribonuclease A, theoretical approach to the binding of amphipathic molecules to, and other globular proteins (Jones, M. N.) 109–114

Ribonuclease acid, messenger, salivary-gland, fly (Rhyynchocoris americana) larva, gel-electrophoretic analysis of (Lara, F. J. S. & Okretic, M. C.) 575–580

Ribonuclease acid, polyadenylate-containing, micro method for the assay of, by gel electrophoresis (Lara, F. J. S. & Okretic, M. C.) 575–580

Ribonuclease acid, transfer, lysine, demonstration of two isoaccepting species of, in Pseudomonas aeruginosa (Thimmapaya, B. & Cherayil, J. D.) 377–386

Ribosomes, 30S, accumulation of a 30S precursor of, in a mutant of Escherichia coli (Markay, F. & Wild, D. G.) 463–465

Ricinus communis, see Bean, castor

Saccharomyces cerevisiae, purification and properties of S-adenosylmethionine decarboxylase from (Pösö, H., Sinervirta, R. & Jänne, J.) 67–73

Salivary gland, fly (Rhyynchocoris americana)-larva, gel-electrophoretic analysis of messenger ribonucleic acid from (Lara, F. J. S. & Okretic, M. C.) 575–580

Salivary gland, parotid, rat, immunochemical relation ship between α-amylases of, and liver, serum and pancreas (Messer, M. & Dean, R. T.) 17–22

Salt gland, rectal, dogfish, reversible delipidation of solubilized microsomal sodium-plus-potassium ion-dependent adenosine triphosphatase from (Ottolegghi, P.) 61–66

Serum albumin, see Albumin, serum

Serum, interaction of the subtilopeptidase A isoenzyme system with components of, and its importance for quantitative immunoelectrophoresis (Verbruggen, R.) 149–155

Serum, rat, immunochemical relationship between α-amylases of, and liver, pancreas and parotid gland (Messer, M. & Dean, R. T.) 17–22

Shrimp, bioluminescent (Oplophorus gracilorostris), purification and properties of oxyluciferin from, and the chemical synthesis of a model luciferin compound biologically active with luciferase from the same organism (Yamaguchi, I.) 9–15

Sialidase, use of affinity chromatography in an improved method for the purification of, from Clostridium perfringens (Geisow, M. J.) 181–183

Silver ions, dissociation by, of active Escherichia coli β-galactosidase dimer into an inactive monomer (Kaneshiro, C. M., Enns, C. A., Hahn, M. G., Peterson, J. S. & Reithel, F. J.) 433–434

Skeletal muscle, see Muscle, skeletal

Skin, ox, characterization of the polypeptide chains of α-keratin from (Steinert, P. M. & Idler, W. W.) 603–614

Small intestine, see Intestine, small

Sodium dodecyl sulphate, theoretical approach to the binding of amphipathic molecules such as, to globular proteins (Jones, M. N.) 109–114

Sperm, ox, effect of methylglyoxal bis(guanyl hydrazone) and, and other polyamines on rat liver nuclear structure and deoxyribonucleic acid template activity (Brown, K. B., Nelson, N. F. & Brown, D. G.) 505–512

Spleen, pig, purification and properties of phosphofructokinase from (Hickman, P. E. & Weidemann, M. J.) 327–336

Vol. 151
Spleen, pig, role of apurinic sites in the resistance of methylated oligodeoxyribonucleotides to degradation by exodeoxyribonuclease from (Margison, G. P., O'Connor, P. J. & Cornish-Bowden, A.) 249–256

Squalus acanthias, see Dogfish

Staphylococcus aureus H, influence of alanine ester residues on the binding of magnesium ions to teichoic acids from the cell wall of (Lambert, P. A., Hancock, I. C. & Baddiley, J.) 671–676

Staphylococcus aureus N.C.I.B. 11195, amino acid sequence of penicillinase from (Ambler, R. P.) 197–218

Subtilopeptidase A, interaction of the isoenzyme system of with serum components and its importance for quantitative immunoelectrophoresis (Verbrugge, R.) 149–155

Supernatant fraction, see Cytosol

Surfactants, pulmonary, characterization of, from ox, rabbit, rat and sheep (Harwood, J. L., Desai, R., Hext, P., Tetley, T. & Richards, R.) 707–314

Synovial fibroblasts, rabbit, cultured, immunological studies with a specific antiserum to collagenase from (Werb, Z. & Reynolds, J. J.) 655–663

Synovial fibroblasts, rabbit, cultured, immunological identity of the collagenase from, with the enzymes released from other rabbit cells and tissues in normal and pathological conditions (Werb, Z. & Reynolds, J. J.) 665–669

Synovial fibroblasts, rabbit, cultured, purification and properties of a specific collagenase from (Werb, Z. & Reynolds, J. J.) 645–653

Teichoic acid, poly(glucosylglycerol phosphate), characterization of, in the cell wall of *Bacillus stearothermophilus* B65 (Anderson, A. J. & Archibald, A. R.) 115–120

Teichoic acids, influence of alanine ester residues on the binding of magnesium ions to, from *Staphylococcus aureus* H cell wall (Lambert, P. A., Hancock, I. C. & Baddiley, J.) 671–676

Tetraethyliuriam disulphide (disulfiram), effects of, on the activities of sheep liver cytoplasmic and mitochondrial aldehyde dehydrogenases (Kitson, T. M.) 407–412

Thermomycolase, see Thermomycolin

Thermomycolin, *Malbranchea pulchella* var. *sulfurea*, extracellular, substrate specificity of (Stevenson, K. J. & Gaucher, G. M.) 527–542

Thiol groups, protein, absolute and selective specificity of the reactions of the fluorescent compounds 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 4-((N-2-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole with (Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L. & Suschitzky, H.) 417–432

Thy-1 glycoprotein, purification and characterization of, from rat brain membranes (Barclay, A. N., Letarte-Muirhead, M. & Williams, A. F.) 699–706

Thy-1 glycoprotein, purification and characterization of, from rat thymocyte membranes (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697

Thymocytes, rat, purification and characterization of Thy-1 glycoprotein from membranes of (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697

Thymus gland, rat, purification and characterization of Thy-1 glycoprotein from cell membranes of (Letarte-Muirhead, M., Barclay, A. N. & Williams, A. F.) 685–697

Tobacco (*Nicotiana tabacum*) leaves, activities and other properties of enzymes in the cell wall of mesophyll cells of (Yung, K.-H. & Northcote, D. H.) 141–144

Trachea, ox, electron-microscopic studies on proteoglycans isolated from hyaline cartilage from, and other sources (Thyberg, J., Lohmander, S. & Heinegard, D.) 157–166

Transfer ribonucleic acid, see Ribonucleic acid, transfer

Transferrin, apo-, oxidation of ferrous iron and the formation of transferrin from, catalysed by chicken egg-yolk phosphovitin (Osaki, S., Sexton, R. C., Pascual, E. & Freiden, E.) 519–525

Transferrin, oxidation of ferrous iron and the formation of, from apotransferrin catalysed by chicken egg-yolk phosphovitin (Osaki, S., Sexton, R. C., Pascual, E. & Freiden, E.) 519–525

Trichomonas foetus, purification and properties of β-N-acetyltetrasaminic acid from (Edwards, R. G., Thomas, P. & Westwood, J. H.) 145–148

Triticum vulgare, see Wheat

Tritium isotope (3H), semi-synthesis of pig insulin labelled with, with a specific radioactivity of up to 20 curies per millimole (Halban, P. A. & Offord, R. E.) 219–225

Tritium isotope (3H), synthesis of isopenicillin N, penicillin N and 6-aminopenicillanic acid labelled with (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

Tropomyosin, purification of α-actinin, myosin and, from water-bug and dung-beetle flight muscle (Hammond, K. S. & Goll, D. E.) 189–192

Tropomyosin, purification of, α-actinin, labelled with (Usher, J. J., Loder, B. & Abraham, E. P.) 729–739

Tropomyosin, skeletal-muscle, rabbit, primary structure of troponin T and its interaction with (Jackson, P., Amphlett, G. W. & Perry, S. V.) 85–97

Tropomin C, skeletal-muscle, rabbit, primary structure of troponin T and its interaction with, and tropomyosin (Jackson, P., Amphlett, G. W. & Perry, S. V.) 85–97

Tropomin T, skeletal-muscle, rabbit, primary structure of, and its interaction with tropomyosin (Jackson, P., Amphlett, G. W. & Perry, S. V.) 85–97

Tyrosinase, spinach-beet, action of hydrogen peroxide on the hydroxylation of p-coumarate by (Vaughan, P. F. T. & McIntyre, R. J.) 759–762

Tyrosine, transamination of, by rat liver, brain and small-intestine kynurenine-2-oxoglutarate aminotransferase (Noguchi, T., Minatogawa, Y., Okuno, E., Nakatani, M., Morimoto, M. & Kido, R.) 399–406

Ubiquinone-2, reaction of rat liver mitochondrial choline dehydrogenase with, and other electron acceptors (Barrett, M. C. & Dawson, A. P.) 677–683

Uridine diphosphate glucuronyltransferase, microsomal, liver, rat, rapid nicotinamide-adene dinucleotide-linked method for the assay of the activity of, and the substrate specificity of the enzyme (Mulder, G. J. & Van Doorn, A. B. D.) 131–140

1975
Urine, identification of a λ Bence-Jones protein in, of guinea pigs with L2C lymphocytic leukaemia (Stevenson, F. K., Mole, L. E., Raymont, C. M. & Stevenson, G. T.) 751–753

Urine, pregnancy, radioimmunoassay of oestriol 3-glucuronide and other oestrogen glucuronides in (Samarajeewa, P. & Kellie, A. E.) 369–376

Uterus, rat, purification and properties of oestrogen-induced peroxidase from (McNabb, T. & Jellinck, P. H.) 275–279

Vitamin D₃, see Cholecalciferol

Wall, cell, see Cell wall

Water bug (*Lethocerus cordofanus*), purification of myosin, tropomyosin and α-actinin from the flight muscle of (Hammond, K. S. & Goll, D. E.) 189–192

Wheat (*Triticum vulgare*) germ, interaction of N-(3-carboxypropionyl)aminodecyl-Sepharose with aspartate carbamoyltransferase from (Yon, R. J. & Simmonds, R. J.) 281–290

Yeast, baker’s, investigation of substrate-induced changes in subunit interactions in glyceraldehyde 3-phosphate dehydrogenases from rabbit skeletal muscle and, by measurement of the kinetics and thermodynamics of subunit exchange (Osborne, H. H. & Hollaway, M. R.) 37–45

Yeast, baker’s (*Saccharomyces cerevisiae*), purification and properties of S-adenosylmethionine decarboxylase from (Pösö, H., Sinervirta, R. & Jänne, J.) 67–73
The
BIOCHEMICAL
JOURNAL
Molecular Aspects

Volume 151 1975

EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairman
H. B. F. Dixon
K. M. Jones
N. M. Green*
R. D. Marshall

Chairman
J. W. Bradbeer
H. G. Britton
R. B. Cain
M. Cannon
J. B. Clark
D. D. Davies
R. M. Denton
F. M. Dickinson
R. R. Dils
D. C. Ellwood
P. B. Garland
J. J. Holbrook
M. R. Hollaway

Deputy Chairman
R. N. Perham
C. I. Pogson
D. Robinson
E. V. Rowsell
A. P. Ryle
S. P. Spragg*
D. R. Stanworth
I. O. Walker
D. H. Williamson

Editorial Secretary
J. D. Killip

Assistant Editorial Secretary
E. N. Maltby

P. A. Mayes
J. C. Metcalfe
R. E. Offord
D. V. Parke
R. N. Perham
C. I. Pogson
D. Robinson
E. V. Rowsell
A. P. Ryle
S. P. Spragg*
D. R. Stanworth
I. O. Walker
D. H. Williamson

Overseas Advisory Panel

London: The Biochemical Society © 1975
ACKNOWLEDGEMENT TO REFEREES

The Editorial Board of the *Biochemical Journal* gratefully acknowledges the assistance generously given during the 1974–75 academic year by the following referees:

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. J. Abraham</td>
<td>R. V. Brooks</td>
<td>F. De Matteis</td>
</tr>
<tr>
<td>D. H. Adams</td>
<td>B. L. Brown</td>
<td>A. T. Diplock</td>
</tr>
<tr>
<td>R. L. P. Adams</td>
<td>E. G. Brown</td>
<td>K. S. Dodgson</td>
</tr>
<tr>
<td>S. Ainsworth</td>
<td>K. D. Buchanan</td>
<td>P. R. Dorling</td>
</tr>
<tr>
<td>M. Akhtar</td>
<td>R. H. Burdon</td>
<td>H. M. Dott</td>
</tr>
<tr>
<td>W. N. Aldridge</td>
<td>R. Burns</td>
<td>L. G. Dring</td>
</tr>
<tr>
<td>A. Allen</td>
<td>K. Burton</td>
<td>J. H. Duffus</td>
</tr>
<tr>
<td>A. C. Allison</td>
<td>P. J. G. Butler</td>
<td>G. J. Dutton</td>
</tr>
<tr>
<td>R. P. Ambler</td>
<td>V. S. Butt</td>
<td></td>
</tr>
<tr>
<td>A. F. H. Anderson</td>
<td>P. J. Butterworth</td>
<td></td>
</tr>
<tr>
<td>P. Andrews</td>
<td>F. Bygrave</td>
<td></td>
</tr>
<tr>
<td>G. B. Ansell</td>
<td>R. Cammack</td>
<td></td>
</tr>
<tr>
<td>D. K. Apps</td>
<td>A. K. Campbell</td>
<td></td>
</tr>
<tr>
<td>T. ap Rees</td>
<td>D. J. Candy</td>
<td></td>
</tr>
<tr>
<td>A. R. Archibald</td>
<td>E. M. Carey</td>
<td></td>
</tr>
<tr>
<td>H. R. V. Arnstein</td>
<td>R. Cecil</td>
<td></td>
</tr>
<tr>
<td>A. F. H. Anderson</td>
<td>D. Chapman</td>
<td></td>
</tr>
<tr>
<td>P. Andrews</td>
<td>R. A. Charlwood</td>
<td></td>
</tr>
<tr>
<td>G. B. Ansell</td>
<td>C. J. Chesterton</td>
<td></td>
</tr>
<tr>
<td>J. S. D. Bacon</td>
<td>A. R. Chipperfield</td>
<td></td>
</tr>
<tr>
<td>A. J. Bailey</td>
<td>J. R. Clamp</td>
<td></td>
</tr>
<tr>
<td>E. Bailey</td>
<td>P. Cohen</td>
<td></td>
</tr>
<tr>
<td>G. D. Baird</td>
<td>J. A. Cole</td>
<td></td>
</tr>
<tr>
<td>A. D. Bangham</td>
<td>R. Coleman</td>
<td></td>
</tr>
<tr>
<td>G. R. Banks</td>
<td>G. M. W. Cook</td>
<td></td>
</tr>
<tr>
<td>W. G. Bardsley</td>
<td>R. D. Cooke</td>
<td></td>
</tr>
<tr>
<td>G. R. Barker</td>
<td>H. G. Coore</td>
<td></td>
</tr>
<tr>
<td>M. J. Barnes</td>
<td>A. J. Cornish-Bowden</td>
<td></td>
</tr>
<tr>
<td>A. J. Barrett</td>
<td>R. A. Cox</td>
<td></td>
</tr>
<tr>
<td>W. Bartley</td>
<td>B. Crabtree</td>
<td></td>
</tr>
<tr>
<td>P. M. Bayley</td>
<td>V. M. Craddock</td>
<td></td>
</tr>
<tr>
<td>J. G. Beeley</td>
<td>N. Crawford</td>
<td></td>
</tr>
<tr>
<td>F. Bell</td>
<td>J. M. Creeth</td>
<td></td>
</tr>
<tr>
<td>D. S. Bendall</td>
<td>E. M. Crook</td>
<td></td>
</tr>
<tr>
<td>C. C. F. Blake</td>
<td>G. W. Crosbie</td>
<td></td>
</tr>
<tr>
<td>A. Blow</td>
<td>M. J. Crumpton</td>
<td></td>
</tr>
<tr>
<td>R. P. M. Bond</td>
<td>V. J. Cunningham</td>
<td></td>
</tr>
<tr>
<td>A. H. Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. A. D. Bouchier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Boulter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Bowen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. H. Boxer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. S. Boyd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. C. Bray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Brindley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Britton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Brocklehurst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. R. Bronk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Brookes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. T. Brooks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT TO REFEREES

A. H. Gordon
J. Gordon
J. W. Gorrod
B. J. Gould
G. Gould
H. Gould
D. G. Grahame-Smith
J. K. Grant
C. H. Gray
M. Gray
A. L. Greenbaum
C. Greenwood
G. Gregoriadis
K. Griffiths
W. T. Griffiths
M. I. Gurr
H. Gutfreund
W. E. Gutteridge
B. A. Haddock
C. N. Hales
A. P. Halestrap
D. O. Hall
T. Hallinan
G. Halliwell
W. A. Hamilton
J. J. Harding
T. E. Hardingham
J. I. Harris
P. M. Harrison
G. A. D. Haslewood
J. N. Hawthorne
P. J. Heald
R. B. Heap
D. F. Heath
C. O. Hebb
D. A. Hems
P. J. F. Henderson
T. R. Hesketh
R. C. Hider
S. J. Higgins
R. H. Hinton
A. R. Hipkiss
D. Hochenhull
R. Hoffenberg
W. E. Hornby
L. Hough
M. D. Houslay
A. K. Huggins
E. C. Hulme
D. W. Hutchinson
J. Ingle
L. L. Iversen
A. H. Jackson
D. S. Jackson
R. J. Jackson
W. Jacobson
A. T. James
S. P. James
E. W. Johns
I. R. Johnston
E. A. Jones
I. G. Jones
J. Kay
H. M. Keir
R. G. O. Kekwick
G. L. Kellett
G. W. Kenner
A. J. Kenny
P. W. Kent
D. Kerridge
L. J. King
R. W. King
D. N. Kirk
J. T. Knowler
C. J. Knowles
P. F. Knowles
P. Knox
H. A. Krebs
D. L. Laidman
B. G. Lake
P. J. Large
P. Larkin
G. H. Lathe
D. E. M. Lawson
N. R. Lazarus
B. Leckie
H. Lehmann
W. R. Lieb
M. D. Lilly
L. Lim
J. L. Linzell
D. Lloyd
J. B. Lloyd
C. Long
P. Larkin
D. J. Lowe
G. Lowe
P. J. Lund
M. R. Lunt
M. D. Mawer
J. D. McGivan
H. McIlwain
A. E. M. McLean
P. M. Meadow
J. Melling
S. M. Metcalf
F. Michal
R. H. Michell
B. Middleton
J. E. M. Midgley
D. J. Millward
C. Milstein
C. P. Milstein
L. E. Mole
W. Montague
R. Moor
C. J. O. R. Morris
L. J. Morris
J. M. Morrison
D. W. Moss
H. Muir
R. Mulvey
E. A. Munn
K. Murray
N. B. Myant
P. C. Newell
E. A. Newsholme
A. A. Newton
D. G. Nicholls
B. H. Nicholson
D. C. Nicholson
I. A. Nimmo
D. H. Northcote
G. Nuki
P. B. Nunn
P. Ó Carra
G. W. Offer
A. G. Ogston
M. G. Ord
D. Osborne
J. H. Ottaway
O. Parkes
R. M. E. Parkhouse
D. S. Parsons
S. M. Partridge
C. A. Pasternak
W. S. Peart
J. F. Pennock
M. F. Perutz
T. J. Peters
C. F. Phelps
P. J. R. Phrzackerley
V. R. Pickles
G. A. J. Pitt
ACKNOWLEDGEMENT TO REFEREES

R. Pitt-Rivers M. L. Sinnott G. Turnock
D. T. Plummer T. F. Slater J. R. Turvey
A. R. Poole R. M. S. Smellie R. van Heyningen
J. W. Porteous A. E. Smith P. F. T. Vaughan
R. R. Porter K. E. Smith C. A. Vernon
G. M. Powell K. Snell H. E. Wade
E. M. Press G. A. Snow S. G. Waley
R. G. Price E. Southern P. G. Walker
J. D. Priddle G. H. Spray R. Walker
J. B. Pridham M. Spry R. J. Walker
R. H. Pritchard S. W. Stanbury D. Walsh
R. V. Quincey D. A. Stansfield M. J. Waring
T. Rabbitts J. R. Stark G. B. Warren
M. Raff F. S. Steven J. C. Waterlow
W. N. M. Ramsay L. Stevens W. M. Watkins
C. Ratledge H. B. Stoner D. C. Watts
J. Reynolds R. J. Stodoley H. B. Waynforth
E. G. Richards R. J. Sturgeon A. G. Weeds
G. C. K. Roberts I. W. Sutherland P. D. J. Weitzman
J. I. S. Robertson L. Svensnerholm M. Webb
D. S. Robinson P. F. Swann I. C. West
G. B. Robinson B. E. P. Swoboda K. P. Wheeler
R. Rodnight R. L. M. Syne D. A. White
H. J. Rogers G. H. Tait K. Wildenthal
D. B. Roodyn M. J. A. Tanner J. M. Wilkinson
L. L. Rudel J. R. Tata S. G. Wilkinson
B. E. Ryman C. B. Taylor D. J. Williams

E. D. Saggerson E. W. Taylor J. Williams
F. Sanger K. W. Taylor R. T. Williams
J. R. Sargent F. W. J. Teale E. D. Wills
D. J. Saunders I. O. Thomas B. G. Winchester
J. G. Scane J. O. Thomas A. Wiseman
J. E. Scott R. Y. Thomson E. J. Wood
J. E. Scott C. J. R. Thorne D. Woolley
M. J. Selwyn C. J. Threlfall J. C. Wootton
S. Shall K. F. Tipton T. S. Work
N. Shaw M. P. Tombs E. A. Wren
A. Sheltawy D. L. Topping D. W. Yates
H. S. A. Sherratt I. P. Trayer M. G. Yates
A. H. Short M. Tree M. B. H. Youdim
A. Silver D. R. Trentham M. D. Yudkin
A. P. Sims A. J. Trewavas L. J. Zatman
P. Sims P. K. Tubbs

L. J. Zatman