The Substrate Specificity of Thermomycolase, an Extracellular Serine Proteinase from the Thermophilic Fungus Malbranchea pulchella var. sulphurea

By KENNETH J. STEVENSON and G. MAURICE GAUCHER

Biochemistry Group, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada

(Received 17 February 1975)

The specificity of thermomycolase toward glucagon and the oxidized A and B chains of insulin was investigated. Extensive digestion of glucagon occurred when conducted at pH7.0 and 45°C for 40min, whereas hydrolysis of only three peptide bonds occurred at pH7.0 and 28°C for 5min. A similar situation was observed for the oxidized B chain of insulin, which exhibited only a single major cleavage after 5min at 25°C. No well-defined specificity for particular amino acid residues was evident, but ready hydrolysis of peptide bonds occurred within sequences containing non-polar residues. This endoproteinase therefore possess an extended hydrophilic binding site for polypeptides. Thermomycolase hydrolysed acetylalanylanalanylanine methyl ester and elastin-Congo Red at 22 and 8.5 times the rate of porcine elastase respectively. A limited degradation of native collagen and significant hydrolysis of benzylxycarbonyl-Gly-Pro-Leu-Gly-Pro were suggestive of some collagenase-like activity. No keratinase activity was apparent.

The production of proteolytic enzymes by thermophilic fungi was examined by Ong & Gaucher (1973) in a search for an extracellular proteinase whose biosynthesis, structure and properties would be both interesting and amenable to investigation.

Thermophilic fungi have been defined as fungi that have maximum and minimum growth temperatures at or above 50° and 20°C respectively (Cooney & Emerson, 1964). Various other studies of extracellular enzymes produced by thermophilic fungi have dealt with amylases, cellulases, β-1,3-glucanases, a lipase, aminopeptidases and an acid proteinase. Malbranchea pulchella var. sulphurea, one of ten thermophiles investigated, was selected because it produced a significant amount of a single thermostable extracellular proteinase. Inactivation of this alkaline proteinase with Dip-F- at pH8 indicated that it belonged to the 'serine family' of proteolytic enzymes (Hartley, 1960). Its production, purification and partial characterization have been investigated (Ong & Gaucher, 1972, 1975), and the trivial name thermomycolase has been adopted. Thermomycolase has a molecular weight of 33000 (Voordouw et al., 1974a,b) and is remarkably thermostable. In the presence of 10mM-CaCl₂ at pH7.4 and 73°C, one-half of the proteinase activity is lost in 110min. In contrast, one-half of the activity is lost in 7.5min in the absence of added Ca²⁺ ions (Ong & Gaucher, 1972). The hydrolysis of p-nitrophenol esters of N-benzylxycarbonyl-L-amino acids by thermomycolase has revealed a preference, alanine > tyrosine > phenylalanine > glycine > leucine > tryptophan > valine residues (Ong & Gaucher, 1975). The α isomers of the alanine and phenylalanine esters were only hydrolysed to a very limited extent.

Studies with M. pulchella var. sulphurea have also shown that thermomycolase is only produced in the presence of a protein nutrient such as casein. Readily catabolized metabolites such as glucose and amino acids support growth, but strongly repress proteinase production even when casein is present in the growth medium (Ong & Gaucher, 1972; J. M. Dunham & G. M. Gaucher, unpublished work).

In the present paper, the specificity of thermomycolase towards polypeptide substrates of known sequence is reported. With respect to its proteolytic activity, the enzyme is particularly elastase-like, as well as being similar to chymotrypsin and perhaps a collagenase.
Experimental

Materials

Glucagon and elastin–Congo Red were purchased from Nutritional Biochemical Corp., Cleveland, Ohio, U.S.A. Ac-Tyr-OEt and Bz-Arg-OEt were purchased from Aldrich Chemical Co., Milwaukee, Wis., U.S.A. Ac-Ala2-OMe, Cbz-Gly-Pro-Gly-Gly-Pro-Ala, Cbz-Gly-Pro-Leu-Gly-Pro, Cbz-Gly-Gly-Phe, Cbz-Gly-Gly-Leu, Cbz-Pro-Leu-Gly, Ac-Ala-Ala-Ala-Ala, Gly6, Cbz-Gly-ONp, Cbz-Ala-ONp and collagen (bovine achilles tendon) were purchased from Sigma Chemical Co., St. Louis, Mo., U.S.A. Keratin was purchased from Calbiochem, Los Angeles, Calif., U.S.A. Oxidized A and B chains of bovine insulin were purchased from Schwarz–Mann, Orangeburg, N.Y., U.S.A. Phenanthrenequinone was purchased from Eastman Organic Chemicals, Rochester, N.Y., U.S.A.

Methods

Isolation of thermomycolase. The production and purification of thermomycolase was carried out as described by Ong & Gaucher (1975) and care was taken to avoid significant autolysis (Voordouw et al., 1974b).

Digestion of glucagon with thermomycolase. A solution of thermomycolase was dialysed at 0°C for 24h against 1 mm-CaCl2, adjusted to pH7.0 with 10 mm-NH3. The concentration of the non-diffusible proteinase was determined by using the \(E_{1\text{cm}}^{1\text{nm}} \) = 13.5 ± 0.2 at 280 nm, 25°C and pH 7.0 (Voordouw et al., 1974b). A portion of this solution was added to 10 mg of glucagon dissolved in 1.0 ml of water maintained at pH 7.0 with 10 mm-NH3 by using a Radiometer type SBR2C pH-stat. The molar ratio of glucagon to thermomycolase was 50 and the temperature was maintained at 45°C. The digestion was allowed to proceed for 5 or 40 min and the pH of the digest was then adjusted to 3 with 0.1 m-HCl and the solution was placed in ice. To ensure that all peptides arose from the digestion of glucagon, controls were prepared from which glucagon or thermomycolase was omitted.

Digestion of the oxidized A and B chains of insulin. A portion of the thermomycolase solution described above was added to 10 mg of the oxidized A chain dissolved in 4 ml of water adjusted to pH 7.0 with 10 mm-NH3 by using the pH-stat. The molar ratio of A chain to thermomycolase was 50 and the temperature was 25°C. After proceeding for 5 min, the digestion was terminated by lowering the pH to 3 and placing in ice–water. The digestion of the oxidized B chain of insulin (10 mg) was conducted as outlined above for the oxidized A chain. To solubilize the oxidized B chain, the pH was raised to 9.0. Digestions for 5 min were carried out at both 25°C and 45°C.

Purification of peptides. The thermomycolase digests were spotted in the centre of a sheet of Whatman 3MM paper and subjected to high-voltage electrophoresis at pH 6.5 and 60 V/cm for 1 h. Side strips (1 cm) were removed to detect the peptide bands with cadmium–ninhydrin. The ‘neutral’ band was removed, sewn on to a second sheet of Whatman 3MM paper at a distance of 12 cm from the anode and subjected to high-voltage electrophoresis at pH 2.0 and 60 V/cm for 50 min.

The purification procedure for each peptide present in the digest was determined by preparing a series of two-dimensional peptide ‘maps’. Side strips of the basic and acidic peptides (initial pH 6.5 ionogram) were sewn on to Whatman 3MM paper at 12 cm or 15 cm from the anode and subjected to high-voltage electrophoresis at pH 2.0 and 60 V/cm for 1 h or pH 3.5 and 60 V/cm for 1 h respectively. Similarly, a side strip from the pH 2.0 ionogram of the ‘pH 6.5 neutrals’ was subjected to high-voltage electrophoresis at pH 3.5 and 60 V/cm for 1 h. Two-dimensional peptide ‘maps’ were also prepared by sewing side strips on to Whatman 3MM paper and subjected to descending chromatography in butanol–1-ol–acetic–water (3:1:1, by vol.) for 24 h or until N\(^{\text{7}-2,4\text{-dinitrophenyl-lysine}}\) migrated to within 7 cm of the bottom. All chromatograms were stained with cadmium–ninhydrin.

Digestion of peptides. The peptides Cbz-Gly-Pro-Gly-Gly-Pro-Ala, Cbz-Gly-Pro-Leu-Gly-Pro, Cbz-Gly-Gly-Phe, Cbz-Gly-Gly-Leu, Cbz-Pro-Leu-Gly, Ac-Ala-Ala-Ala-Ala, Gly6, Cbz-Gly-ONp, Cbz-Ala-ONp and collagen (bovine achilles tendon) were purchased from Sigma Chemical Co., St. Louis, Mo., U.S.A. Keratin was purchased from Calbiochem, Los Angeles, Calif., U.S.A. Oxidized A and B chains of bovine insulin were purchased from Schwarz–Mann, Orangeburg, N.Y., U.S.A. Phenanthrenequinone was purchased from Eastman Organic Chemicals, Rochester, N.Y., U.S.A.
a distance of 12 cm from the anode and subjected to high-voltage electrophoresis at pH2.0 and 60 V/cm for 1 h. The ionogram was stained with cadmium–ninhydrin. Controls of each digest minus enzyme or fibres were handled identically.

High-voltage electrophoresis. The vertical strip high-voltage electrophoresis apparatus was similar to that described by Michl (1951) as modified by Ryle et al. (1955). The buffer systems and coolants used were as described by Smillie & Hartley (1966). Peptides were detected with the cadmium–ninhydrin dip reagent of Heilmann et al. (1957) by developing guide strips of chromatograms or the entire two-dimensional peptide 'maps'. Amino acids were detected with a dip reagent consisting of 0.7 ml of collidine in 100 ml of 0.5% (w/v) ninhydrin in acetone. The presence of tryptophan-containing peptides was investigated with Ehrlich reagent (p-dimethylamino-benzaldehyde) as described by Bailey (1968a). The suitability of the Ehrlich reagent was confirmed by obtaining positive results with peptides known to contain tryptophan. The presence of histidine- and tyrosine-containing peptides was detected with the Pauly reagent (diazotized sulphanilic acid) as described by Bailey (1968b) and arginine-containing peptides were detected with phenanthrenequinone (Yamada & Itano, 1966). Visual dye markers were used throughout high-voltage electrophoresis (Stevenson, 1971).

Detection of amino acids in proteolytic digests of polypeptides. A-Chymotrypsin (30 mg) was dissolved in 0.1 m-N-ethylmorpholine buffer adjusted to pH 7.0 with acetic acid. Thermomycolase (0.5 mg) was added and the digestion allowed to proceed at 45°C for 5 h. The digest was spotted on a sheet of Whatman 3 MM paper at a concentration of 1 mg/cm at a distance of 12 cm from the anode and subjected to high-voltage electrophoresis at pH 1.6 and 60 V/cm for 45 min. The buffer used was 8.6% formic acid. A 3 cm side strip was removed, sewn on to a second sheet of Whatman 3 MM paper at a distance of 12 cm from the anode, and subjected to high-voltage electrophoresis at pH 2.4 and 40 V/cm for 1 h. The buffer used was 4% formic acid adjusted to pH 2.4 with pyridine (final pyridine content was 0.58%). The two-dimensional peptide ‘map’ was stained with cadmium–ninhydrin. Amino acids, if present, were found lying below the peptide ‘diagonal’. Various proteins were digested with proteolytic enzymes and subjected to two-dimensional high-voltage electrophoresis as outlined. In each case ninhydrin-positive spots appearing below the peptide ‘diagonal’ were identified as free amino acids.

Amino acid analyses. The amino acid analyses of peptides were performed by hydrolysing the peptide in 6M-HCl at 110°C for 24 h. The acid hydrolysates were evaporated to dryness on an Evapomix and were analysed on a Beckman 121 or Phoenix M7800 amino acid analyser by the method of Spackman et al. (1958) as extended by Spackman (1967).

Enzyme assays. The esterolytic activity of thermomycolase was assayed with Ac-Ala–OMe (Gertler & Hofmann, 1970), Cbz-Gly–ONp and Cbz-Ala–ONp (Kirsch & Igelstrom, 1966). Elastolytic activity was assayed by the elastin–Congo Red method (Gertler & Hofmann, 1967; Gertler & Birk, 1970).

Results

The substrate specificity of thermomycolase was investigated by analysing peptides derived from digests of glucagon and insulin (oxidized A and B chains). These digestions were carried out at 25°C or 45°C and at close to the optimum pH in the presence of CaCl₂. The conditions chosen were based on studies by Ong & Gaucher (1975) on the pH stability and thermostability of thermomycolase and on the stabilizing effect of CaCl₂. The characterization of 27 peptides isolated from a 40 min thermomycolase digest of glucagon is presented in Table 1. In total, however, about 40 peptides were present; those not reported were isolated in very low yield. The complexity of the digest was a result of extensive partial hydrolysis of peptide bonds under the conditions used.

Thermomycolase possesses only endopeptidase activity, since amino acids were essentially absent from the glucagon digest. This observation is in keeping with the low peptidase activity of fungal proteinases (Morihara et al., 1971; Oka & Morihara, 1973). Additional support for this lack of exopeptidase activity was obtained from the observation that amino acids were not detected on a two-dimensional peptide 'map' (pH 1.6/pH 2.4) of a thermomycolase digest of €-chymotrypsin (cf. under 'Methods'). Amino acids, if present, would appear below the peptide 'diagonal' because of an increase in their negative charge arising from the ionization of their €-carboxyl groups (pK approx. 2). This procedure is selective for amino acids, since peptides remain on the 'diagonal' because their €-carboxyl groups have higher pK values (near 3).

The peptides isolated from the digest of glucagon are aligned with the known amino acid sequence of the hormone in Table 2. The assignment of major, intermediate and minor cleavages occurring along the polypeptide was based on the recovery and sequential assignment of each peptide as determined from their amino acid composition (Table 1). No simple specificity characteristics exist for thermomycolase. The large number of peptide bonds completely or partially hydrolysed (15 out of 28 in glucagon) suggests that the proteinase has a low specificity at its temperature and pH optima. Digestion conditions which allowed fewer cleavage of glucagon assisted in determining the nature of those
Table 1. Amino acid composition of peptides isolated from a digest of glucagon by thermolysin

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Yield (nmol)</th>
<th>Cadmium-ninhydrin colour</th>
<th>m<sub>4</sub></th>
<th>m<sub>5</sub></th>
<th>m<sub>6</sub></th>
<th>m<sub>7</sub></th>
<th>Other stains</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>176</td>
<td>Orange</td>
<td>0.17</td>
<td>1.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Asp (1.00), Thr (1.00), Gly (0.41)</td>
</tr>
<tr>
<td>A6c</td>
<td>124</td>
<td>Red</td>
<td>0.47</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>1.09 Tyr</td>
<td>Asp (1.18), Glu (0.19), Ala (0.14), Leu (1.00), Tyr (0.53)</td>
</tr>
<tr>
<td>A6b</td>
<td>116</td>
<td>Red</td>
<td>0.47</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>1.30 Tyr</td>
<td>Asp (1.21), Ser (0.93), Leu (1.00), Tyr (0.72)</td>
</tr>
<tr>
<td>A6a</td>
<td>86</td>
<td>Red</td>
<td>0.47</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>1.39 Tyr</td>
<td>Asp (1.00), Glu (1.00), Val (0.93), Phe (1.12)</td>
</tr>
<tr>
<td>A7a</td>
<td>22</td>
<td>Red</td>
<td>0.26</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tyr Lys (1.00), Asp (2.00), Ser (1.27), Leu (1.00), Tyr (0.63)</td>
</tr>
<tr>
<td>B6</td>
<td>166</td>
<td>Red</td>
<td>-0.43</td>
<td>1.97</td>
<td>-</td>
<td>0.72</td>
<td>Arg</td>
<td>Arg (1.20), Glu (1.00), Ala (1.00)</td>
</tr>
<tr>
<td>B7</td>
<td>100</td>
<td>Yellow</td>
<td>-0.51</td>
<td>1.97</td>
<td>-</td>
<td>0.83</td>
<td>Arg</td>
<td>Arg (1.00), Ser (0.86)</td>
</tr>
<tr>
<td>B3</td>
<td>66</td>
<td>Red</td>
<td>-0.31</td>
<td>1.54</td>
<td>-</td>
<td>0.50</td>
<td>Arg</td>
<td>Arg (2.14), Asp (1.18), Ser (1.09), Glu (1.03), Ala (1.00), Leu (0.45)</td>
</tr>
<tr>
<td>B9</td>
<td>58</td>
<td>Red</td>
<td>-0.61</td>
<td>1.93</td>
<td>-</td>
<td>0.92</td>
<td>Arg</td>
<td>Arg (2.31), Glu (1.00), Ala (1.00)</td>
</tr>
<tr>
<td>B1</td>
<td>54</td>
<td>Red</td>
<td>-0.23</td>
<td>1.34</td>
<td>-</td>
<td>0.47</td>
<td>Arg</td>
<td>Arg (2.30), Asp (1.00), Ser (0.88), Glu (0.96), Ala (0.92), Leu (1.00), Tyr (0.41)</td>
</tr>
<tr>
<td>B8</td>
<td>52</td>
<td>Red</td>
<td>-0.54</td>
<td>20.4</td>
<td>-</td>
<td>1.05</td>
<td>Lys</td>
<td>Lys (1.00), Ser (0.65)</td>
</tr>
<tr>
<td>B2</td>
<td>36</td>
<td>Red</td>
<td>-0.28</td>
<td>1.54</td>
<td>-</td>
<td>0.58</td>
<td>Arg</td>
<td>Arg (2.20), Asp (1.00), Ser (0.83), Glu (0.33), Ala (0.16), Leu (0.77), Tyr (0.22)</td>
</tr>
</tbody>
</table>

Sequence position refers to the glucagon sequence shown in Table 2.
<table>
<thead>
<tr>
<th>Peptide</th>
<th>Vol.</th>
<th>Substrate</th>
<th>pKa</th>
<th>CoM</th>
<th>Absorbance</th>
<th>Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9a</td>
<td>360</td>
<td>Red</td>
<td>1.31</td>
<td>0.92</td>
<td></td>
<td>Tyr, Lys, Asp, Ser, Tyr, O.86, Tyr, O.136</td>
</tr>
<tr>
<td>N9c</td>
<td>200</td>
<td>Red</td>
<td>1.31</td>
<td>1.53</td>
<td></td>
<td>His, Thr, Ser, Glu, Gly, O.83, Thr, O.04, Ser, O.77</td>
</tr>
<tr>
<td>N7a</td>
<td>134</td>
<td>Orange</td>
<td>1.14</td>
<td>0.75</td>
<td></td>
<td>Lys, Thr, Ser, Tyr, O.11, Thr, O.00, Ser, O.74, Tyr, O.14</td>
</tr>
<tr>
<td>N8</td>
<td>90</td>
<td>Red</td>
<td>1.21</td>
<td>1.19</td>
<td></td>
<td>Arg, Asp, Ser, Tyr, Arg, O.73, Asp, O.10, Ser, O.13, Tyr, O.27</td>
</tr>
<tr>
<td>N6c</td>
<td>80</td>
<td>Orange</td>
<td>1.10</td>
<td>1.25</td>
<td></td>
<td>His, Thr, Ser, Glu, Gly, O.10, Phe, O.42</td>
</tr>
<tr>
<td>N1a*</td>
<td>78</td>
<td>Yellow</td>
<td>0.68</td>
<td>0.56</td>
<td></td>
<td>Trp, Thr, Ser, Gly, Met, Trp, O.20, Ser, O.05, Gly, O.10, Met, O.32</td>
</tr>
<tr>
<td>N9bi</td>
<td>52</td>
<td>Red</td>
<td>1.31</td>
<td>1.31</td>
<td></td>
<td>Arg, His, Asp, Thr, Arg, O.43, Arg, O.83, Ser, O.81, Gly, O.65</td>
</tr>
<tr>
<td>N7bi</td>
<td>38</td>
<td>Orange</td>
<td>1.14</td>
<td>0.81</td>
<td></td>
<td>His, Asp, Thr, Ser, Val, His, O.12, Asp, O.47, Thr, O.35, Ser, O.88</td>
</tr>
<tr>
<td>N6bi</td>
<td>36</td>
<td>Red</td>
<td>1.10</td>
<td>1.06</td>
<td></td>
<td>Arg, Thr, Asp, Ser, Val, Arg, O.88, Asp, O.20, Thr, O.76</td>
</tr>
<tr>
<td>N9bII</td>
<td>34</td>
<td>Red</td>
<td>1.31</td>
<td>1.31</td>
<td></td>
<td>His, As for N9bI</td>
</tr>
<tr>
<td>N3b</td>
<td>34</td>
<td>Red</td>
<td>0.88</td>
<td>0.75</td>
<td></td>
<td>Tyr, Asp, Ser, Glu, Gly, O.00, Thr, O.11, Ser, O.35, Gly, O.23</td>
</tr>
<tr>
<td>N6a</td>
<td>30</td>
<td>Yellow</td>
<td>1.10</td>
<td>0.72</td>
<td></td>
<td>Tyr, Lys, Asp, Thr, Lys, Tyr, O.20, Asp, O.10, Thr, O.81</td>
</tr>
<tr>
<td>N4a</td>
<td>30</td>
<td>Yellow</td>
<td>0.94</td>
<td>0.72</td>
<td></td>
<td>Thr, Gly, Phe, Thr, O.13, Gly, O.00, Phe, O.13</td>
</tr>
<tr>
<td>N1b*</td>
<td>28</td>
<td>Yellow</td>
<td>0.68</td>
<td>0.56</td>
<td></td>
<td>Trp, As for N1a, Met, O.93, Leu, O.00</td>
</tr>
<tr>
<td>N6bII</td>
<td>28</td>
<td>Red</td>
<td>1.10</td>
<td>1.06</td>
<td></td>
<td>Arg, As for N6bI</td>
</tr>
</tbody>
</table>

* Peptides N1a and N1b were non-separable and were deduced from amino acid analyses. The composition of N1b is as for N1a.
† Arbitrarily taken as 1.00 or 2.00 residues as indicated with recoveries of other amino acids relative to this amino acid.
Table 2. Peptides obtained from the digestion of glucagon by thermomycolase and the position of bonds cleaved

The characterization of the peptides is shown in Table 1. The arrows indicate cleavages producing major peptides (†, more than 100 nmol yield), intermediate peptides (†, 50-100 nmol yield) and minor peptides (†, less than 50 nmol).

Acidic and basic peptides

\[
\begin{align*}
\text{NH}_3-\text{His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-CO}_2\text{H} & \\
\end{align*}
\]

Neutral peptides

\[
\begin{align*}
\text{NH}_3-\text{His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-CO}_2\text{H} & \\
\end{align*}
\]

Polypeptide bonds cleaved

\[
\begin{align*}
\text{NH}_3-\text{His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-CO}_2\text{H} & \\
\end{align*}
\]
Table 3. Characterization of peptides obtained from a brief digestion of glucagon by thermomycolase

The digestion occurred at pH 7.0 and 28°C for 5 min with a molar ratio of substrate of proteinase of 100:1. The peptides were purified as described in Table 1.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Yield (nmol)</th>
<th>Colour</th>
<th>$m_{	ext{nH}}$</th>
<th>$m_{	ext{mH}}$</th>
<th>$R_{	ext{SCFF}}$</th>
<th>Other stains</th>
<th>Composition</th>
<th>Sequential position</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>625</td>
<td>Orange</td>
<td>0.12</td>
<td>1.01</td>
<td></td>
<td>-</td>
<td>Asp(1.00),*Thr(0.89)</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>413</td>
<td>Orange</td>
<td>0</td>
<td>0.14</td>
<td>0.31</td>
<td>His, Lys(1.02),His(0.76),Arg(2.33),Asp(3.90),Thr(2.64),Ser(4.75),Glu(3.63),Gly(0.90),Ala(1.00),*Val(0.74),Leu(1.03),Tyr(1.96),Phe(1.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>155</td>
<td>Red</td>
<td>0</td>
<td>0.70</td>
<td></td>
<td>Trp</td>
<td>Met(0.79),Leu(1.00)*</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>108</td>
<td>Red</td>
<td>0</td>
<td>0.56</td>
<td></td>
<td>Trp</td>
<td>Asp(1.00),*Thr(0.81),Met(1.23),Leu(1.20)</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>63</td>
<td>Red</td>
<td>0.06</td>
<td>0.83</td>
<td></td>
<td>-</td>
<td>Asp(1.00),*Thr(0.80),Met(0.47)</td>
<td></td>
</tr>
</tbody>
</table>

Sequential alignment

NH$_3$-His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-CO$_2$H

* Arbitrarily taken as 1.00 residue, with recoveries of other amino acids relative to this amino acid.
Table 4. Amino acid composition of peptides isolated from a digest of the oxidized A chain of insulin by thermomycolase

The conditions were pH 7.0 and 25°C for 5 min with a molar ratio of substrate to proteinase of 50:1.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Yield (nmol)</th>
<th>Cadmium-ninhydrin colour</th>
<th>$m_{D,25}^{225}$</th>
<th>$m_{D,25}^{232}$</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>66</td>
<td>Red</td>
<td>0.35</td>
<td>0.59</td>
<td>Glu(2.30), Leu(1.00), *Tyr(0.95)</td>
</tr>
<tr>
<td>A2</td>
<td>112</td>
<td>Yellow to red</td>
<td>0.50</td>
<td>-0.04</td>
<td>Cys(OH) (0.97), Asp(2.00), *Tyr(1.02)</td>
</tr>
<tr>
<td>A3</td>
<td>84</td>
<td>Yellow to red</td>
<td>0.80</td>
<td>-0.04</td>
<td>Cys(OH) (1.02), Asp(2.00), *Glu(0.47), Leu(0.26), Tyr(0.74)</td>
</tr>
<tr>
<td>A4a</td>
<td>44</td>
<td>Yellow</td>
<td>0.86</td>
<td>-0.52</td>
<td>Cys(OH) (2.30), Ser(1.77), Glu(3.50), Gly(1.00), Ala(1.00), *Val(0.95), Ile(0.28), Leu(1.90), Tyr(0.79)</td>
</tr>
<tr>
<td>A4b</td>
<td>146</td>
<td>Yellow</td>
<td>0.86</td>
<td>-0.63</td>
<td>Cys(OH) (1.90), Ser(1.20), Thr(1.50), Gly(0.96), Ala(1.00), *Val(0.79), Ile(0.34), Leu(0.92), Tyr(0.05)</td>
</tr>
</tbody>
</table>

Sequential alignment

* Arbitrarily taken as 1.00 or 2.00 residues as indicated, with recoveries of other amino acids relative to this amino acid.
Table 5. Amino acid composition of peptides isolated from a low-temperature digest of the oxidized B chain of insulin by thermomycolase

The conditions were pH 9.0 and 25°C for 5 min at a molar ratio of substrate to protease of 50:1.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Yield (nmol)</th>
<th>Cadmium-ninhydrin colour</th>
<th>$m_{4.8}^H$</th>
<th>$m_{3.0}^H$</th>
<th>Composition</th>
<th>Sequential position</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>10</td>
<td>Red</td>
<td>-0.27</td>
<td>1.08</td>
<td>Lys (1.10), Thr (0.81), Pro (1.00), *Ala (0.83), Tyr (0.82), Phe (0.87)</td>
<td>25 30 Phe-Ala</td>
</tr>
<tr>
<td>N1</td>
<td>70</td>
<td>Red</td>
<td>0</td>
<td>0.58</td>
<td>Lys (0.81), Arg (0.77), Cys (O$_2$H) (0.96), Thr (0.80), Glu (1.40), Pro (1.00), Gly (2.00), Ala (1.00), *Val (0.95), Leu (1.30), Tyr (1.50), Phe (2.00)</td>
<td>16 30 Tyr-Ala</td>
</tr>
<tr>
<td>A1</td>
<td>114</td>
<td>Red</td>
<td>0.07</td>
<td>0.64</td>
<td>His (1.09), Cys (O$_2$H) (1.09), Asp (1.04), Ser (0.90), Glu (2.27), Gly (1.44), Ala (1.00), Val (1.71), Leu (2.99), Tyr (0.23), Phe (1.10)</td>
<td>15</td>
</tr>
<tr>
<td>A2</td>
<td>15</td>
<td>Red</td>
<td>0.22</td>
<td>0.35</td>
<td>Arg (0.87), Cys (O$_2$H) (0.78), Glu (1.10), Gly (1.90), Val (0.84), Leu (1.00), *Tyr (0.77), Phe (0.87)</td>
<td>16 24 Tyr-Phe</td>
</tr>
</tbody>
</table>

Sequential alignment

\[
\begin{array}{c}
\text{H$_3$N-Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala-CO$_2$H} \\
1 \downarrow \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30
\end{array}
\]

* Arbitrarily taken as 1.00 residue with recoveries of other amino acids relative to this amino acid.
Table 6. Amino acid composition of peptides isolated from a high-temperature digest of the oxidized B chain of insulin by thermomycolase

The conditions were pH 9.0 and 45°C for 5 min with a molar ratio of substrate to proteinase of 50:1.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Yield (nmol)</th>
<th>Cadmium-ninhydrin colour</th>
<th>(m_{2.0}^{\text{Pen}})</th>
<th>(m_{2.0}^{\text{Ser}})</th>
<th>Composition</th>
<th>Sequential position</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>31</td>
<td>Yellow</td>
<td>-0.55</td>
<td>-</td>
<td>Lys (0.77), Thr (0.68), Pro (0.96), Ala (1.00) *</td>
<td>27 30</td>
</tr>
<tr>
<td>B2</td>
<td>151</td>
<td>Red</td>
<td>-0.41</td>
<td>-</td>
<td>Lys (0.78), Thr (0.93), Pro (1.02), Ala (1.00), *Tyr (0.76), Phe (0.97)</td>
<td>25 30</td>
</tr>
<tr>
<td>N1†</td>
<td>59</td>
<td>Red</td>
<td>0</td>
<td>0.64</td>
<td>Lys (0.19), His (1.36), Cys (O₃H) (0.71), Asp (1.58), Ser (0.70), Glu (1.95), Pro (0.40), Gly (1.32), Ala (0.53), Val (1.92), Leu (2.00), *Phe (1.75)</td>
<td>1 13 Phe-Glu</td>
</tr>
<tr>
<td>N2</td>
<td>264</td>
<td>Red</td>
<td>0</td>
<td>0.90</td>
<td>Ala (1.00), *Leu (0.86)</td>
<td>14 15</td>
</tr>
<tr>
<td>A1</td>
<td>116</td>
<td>Red</td>
<td>0.16</td>
<td>0.42</td>
<td>His (0.22), Arg (0.91), Cys (O₃H) (0.64), Glu (1.00), *Gly (1.66), Ala (0.23), Val (0.95), Leu (1.37), *Tyr (0.67), Phe (1.20)</td>
<td>16 24</td>
</tr>
<tr>
<td>A2</td>
<td>70</td>
<td>Red</td>
<td>0.16</td>
<td>0.76</td>
<td>His (1.35), Cys (O₃H) (0.80), Ser (0.72), Glu (1.00), *Gly (0.97), Val (0.72), Leu (1.97)</td>
<td>5 13 His-Glu</td>
</tr>
</tbody>
</table>

Sequential alignment:

```
N1  ---  A2  ---  N2  ---  A1  ---  B2  ---  B1
```

\[\text{H}_3\text{N-Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala-CO}_2\text{H} \]

* Arbitrarily taken as 1.00 or 2.00 residues as indicated, with recoveries of other amino acids relative to this amino acid.
† Peptide N1 is impure and the sequential position is speculative.
peptide bonds most susceptible to the proteinase. To this end, digestion of glucagon was carried out under more restrictive conditions. The peptides produced and the proteolytic cleavages involved are shown in Table 3. Proteolytic cleavage was confined to the C-terminal region of glucagon, with the major cleavages being glutamine-24–tryptophan-25 and methionine-27–asparagine-28.

The acidic nature of the dipeptide Asn-Thr observed during high-voltage electrophoresis at pH 6.5 reflected the low pK of the α-amino group. This observation is in keeping with the anomalously low pK for the amino group of the dipeptide Asn-Gly (pK = 7.2) and peptides with N-terminal asparagine (Leach & Lindley, 1954). A similar situation was found in the present study with Met-Asn-Thr (Table 3).

To compare the specificity of thermomycolase with that of other proteinases and to delineate further its preference for amino acid side chains, the oxidized A and B chains of insulin were digested under conditions of near optimum pH, at 25°C or 45°C, for only 5 min. Interestingly, only two peptide bonds, leucine-13–tyrosine-14 and glutamic acid-17–asparagine-18, were cleaved in the A chain of insulin (Table 4). The cleavages occurred in an amino acid sequence between cysteic acid residues 11 and 20 containing predominantly non-polar amino acids. The digestion of the oxidized B chain of insulin at pH 9.0 and 25°C resulted in a single major cleavage at leucine-15–tyrosine-16, with a very minor hydrolysis of phenylalanine-25–phenylalanine-26 also occurring (Table 5). Again the hydrolysis of the polypeptide occurred in a very hydrophobic sequence. Repeating the digestion at the optimum temperature (45°C) for thermomycolase caused major cleavages at the two positions mentioned above and also at glutamic acid-13–alanine-14. Minor cleavages were observed at histidine-5–leucine-6 and tyrosine-26–threonine-27 (Table 6).

Table 7. Thermomycolase digest of peptides

<table>
<thead>
<tr>
<th>Peptide substrates</th>
<th>Digest period</th>
<th>Cadmium-ninhydrin colour</th>
<th>m2.6</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cbz-Gly-Pro-Gly-Gly-Pro-Ala</td>
<td>30 min</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cbz-Gly-Pro-Gly-Pro</td>
<td>24 h</td>
<td>Trace yellow</td>
<td>1.10</td>
<td>Pro(1.03),Gly(1.00),Ala(1.03)</td>
</tr>
<tr>
<td>Cbz-Gly-Pro-Leu-Gly-Pro</td>
<td>30 min</td>
<td>Yellow</td>
<td>1.26</td>
<td>Pro(0.99),Gly(1.00)</td>
</tr>
<tr>
<td>Cbz-Gly-Pro-Leu-Gly-Pro</td>
<td>24 h</td>
<td>Strong yellow</td>
<td>1.26</td>
<td>Pro(0.99),Gly(1.00)</td>
</tr>
<tr>
<td>Ac-Ala-Ala-Ala-Ala</td>
<td>30 min</td>
<td>Red</td>
<td>1.26</td>
<td>Ala*</td>
</tr>
<tr>
<td>Ala*</td>
<td>Weak red</td>
<td>1.16</td>
<td>Ala†</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Weak red</td>
<td>0.90</td>
<td>Ala‡</td>
<td></td>
</tr>
<tr>
<td>Cbz-Gly-Gly-Phe</td>
<td>24 h</td>
<td>Weak red</td>
<td>0.78</td>
<td>Phe</td>
</tr>
<tr>
<td>Cbz-Gly-Gly-Leu</td>
<td>24 h</td>
<td>Weak red</td>
<td>0.97</td>
<td>Leu</td>
</tr>
<tr>
<td>Cbz-Pro-Leu-Gly</td>
<td>30 min</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gly*</td>
<td>Yellow</td>
<td>1.37</td>
<td>Gly</td>
<td></td>
</tr>
</tbody>
</table>

* Before acid hydrolysis recovery of alanine 3 nmol; after, recovery of alanine 36 nmol
† The amount of alanine did not increase after acid hydrolysis.
‡ Alanine only present after acid hydrolysis.
The proteolytic activity of thermomycolase was further investigated by using a series of Cbz-peptides, Ac-Ala-Ala-Ala-Ala and Gly₈ (Table 7). Cleavage of Cbz-peptides occurred most readily at the peptide bond in which the carbonyl group was contributed by amino acids possessing hydrophobic side chains.

Hydrolysis products of Cbz-Gly-Pro-Leu-Gly-Pro and Ac-Ala-Ala-Ala-Ala present after a 30min digestion at 45°C and pH8.0 were identified as Gly-Pro and Ala-Ala respectively. A much lower yet significant hydrolysis rate was observed with Cbz-Pro-Leu-Gly and Cbz-Gly-Pro-Gly-Gly-Pro-Ala. Since no hydrolysis of Gly₈ by thermomycolase was detected, the necessity of some side chain interaction(s) was evident. The hydrolysis products of Ac-Ala-Ala-Ala-Ala also support the view that multiple interactions between apolar side chains of the substrate and the active site of the protease are more important than simply the total number of residues in the substrate.

Peptide bonds involving proline (X-Pro or Pro-X) are not readily hydrolysed by thermolycolas. Exhaustive digestion of Cbz-Gly-Pro-Gly-Gly-Pro-Ala by thermomycolase yielded only a trace of alanine resulting from a cleavage of the Pro-Ala bond. An attempt to detect N-terminal proline residues, by using the specific isatin stain (Monier & Jutisz, 1954), on peptides produced by exhaustive digestion of α-chymotrypsin with thermomycolase was negative. This further suggests that X-proline bonds are not readily susceptible to this protease.

The significant esterolytic, elastolytic and collagenolytic activity of thermomycolase is a more specific expression of the general proteolytic capacity of this protease. The enzyme has been shown readily to hydrolyse a series of Cbz-amino acid-ONp ester substrates (Ong & Gaucher, 1975) with Cbz-Gly-ONp or Cbz-Ala-ONp being best for spectrophotometric assays. Esterolytic activity may also be readily assayed by using the elastase substrate Ac-Ala₃-OMe in a pH-stat. This latter substrate was hydrolysed by thermomycolase at a rate 22-fold higher than with porcine elastase. The elastolytic activity of thermomycolase was further substantiated by the finding that elastin–Congo Red was hydrolysed 8.5-fold faster than by porcine elastase (Table 8).

The known collagenase substrates, Cbz-Gly-Pro-Leu-Gly-Pro and Cbz-Gly-Pro-Gly-Gly-Pro-Ala, are hydrolysed by thermomycolase (Table 7) to yield the same products as those produced by collagenases and various serine proteinases (Morihara et al., 1971). These substrates have been commonly used to assay various proteinases for collagenase activity (Grassmann & Nordwig, 1960; Nordwig & Jahn, 1968; Morihara, 1967). Native collagen (bovine achilles tendon) was cleaved by thermomycolase with the slow release of ninhydrin-positive material as detected after high-voltage electrophoresis at pH2.0. However, the denaturation of collagen by refluxing in ethanol increased the release of ninhydrin-positive material. Similar experiments were carried out with native and ethanol-denatured keratin as a substrate for thermomycolase, but no ninhydrin-positive material was observed in these digests after high-voltage electrophoresis at pH2.0. Thus thermomycolase exhibits remarkable elastase activity, some 'collagenase' activity and no keratinase activity.

Table 8. Esterolytic and esterolytic activity of thermomycolase and related alkaline proteinases

<table>
<thead>
<tr>
<th>Ac-Ala₃-OMe</th>
<th>Elastin–Congo Red (ΔE₉₅/h per μmol)</th>
<th>Kₑₘ (mm)</th>
<th>kₑₘ (s⁻¹)</th>
<th>kₑₘ/Kₑₘ (mm⁻¹.s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomycolase</td>
<td>424</td>
<td>1.5</td>
<td>2050</td>
<td>1370</td>
</tr>
<tr>
<td>Porcine elastase</td>
<td>50</td>
<td>0.43</td>
<td>73.0</td>
<td>170*</td>
</tr>
<tr>
<td>Alkaline proteinase from Aspergillus sojae†</td>
<td>Not hydrolysed</td>
<td>21.6</td>
<td>2800</td>
<td>130</td>
</tr>
<tr>
<td>Aspergillus sojae†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus sojae†</td>
<td>32.1</td>
<td>3720</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Aspergillus melleust†</td>
<td>6.7</td>
<td>1540</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Subtilisin BPN′†</td>
<td>0.45</td>
<td>235</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Subtilisin Carlsberg</td>
<td>0.83</td>
<td>1046</td>
<td>1260</td>
<td></td>
</tr>
</tbody>
</table>

* Data of Gertler & Hofmann (1970). Conditions: 1.2 mm-Tris–HCl buffer, pH8.0 and 25°C.
† Data of Morihara et al. (1974). Conditions: 0.1m-KCl adjusted to pH7.5 and 30°C.
‡ Data of Gertler & Hayashi (1971). Conditions: Tris–HCl containing CaCl₂ and KCl at pH8.5 and 30°C.
Discussion

Schechter & Berger (1967) have proposed that the binding of polypeptides to the active site of the
scissile bond (P-P), and from the scissile bond to the
C-terminal (P-P). The series of corresponding
substrates on the proteinase are identified as S-S and S-S.
Extended active sites, allowing multiple
interactions with polypeptides, have been identified
in papain (Schechter & Berger, 1967, 1968), elastase
(Aglas & Berger, 1972, 1973; Thompson & Blout,
1970, 1973a, b, c), thermolysin (Morihara & Tsuzuki,
1970) and a neutral proteinase from Bacillus subtilis
(Morihara et al., 1969a, b). Fungal proteinases in
particular are considered to have extended binding
sites capable of interacting with large substrates
(Morihara et al., 1971).

Studies on the specificity of thermomycolase
towards glucagon under optimum conditions of pH
and temperature revealed a broad proteolytic activity
(Tables 1 and 2) after a 40 min digestion. In comparison,
Asparginopeptidase C hydrolysed five peptide bonds in
glucagon during a 2h digestion period under optimal
conditions (Nordwig & Jahn, 1968).

Careful examination of the amino acids occupying
positions P-P and P-P relative to the scissile
bond P-P did not indicate a well-defined pattern of
hydrolysis in glucagon. The existence of one or more
hydrophobic residues on each side of the scissile bond
was, however, generally observed. Further, if an
active site possessing six substrates, S-S, and S-S,
is considered, then all major cleavages in glucagon
occur in a sequence (P-P) of six amino acid residues,
of which at least four are always non-polar. Charged
amino acids were, however, not excluded from the
active site probably because any unfavourable
interaction is more than offset by the numerous
favourable apolar interactions arising from neigh-
bouring residues. In addition, the apolar portion of
the charged residue itself (i.e. lysine, arginine and
glutamic acid) could contribute a favourable inter-
action. There is in fact evidence to suggest that
interactions at subsites as far removed as S may
contribute to optimal substrate binding. For example,
phenylalanine-6 is two residues removed from the
major cleavage between serine-8 and aspartic acid-9.
Similarly, tyrosine-10 is in proximity to another
major cleavage point at lysine-12. Tyrosine-13,
leucine-14 and tryptophan-25 are also situated two
residues removed from the carbonyl groups of
aspartic acid-15, serine-16 and methionine-27 re-
spectively.

A more selective degradation pattern of glucagon
was obtained by shortening the digestion period to
5 min and lowering the temperature to 28°C (Table
3). Under these conditions cleavages were restricted
to the non-polar C-terminal region. X-ray-diffraction
investigations of glucagon indicated that although
the peptide is 75% helical, the C-terminal hexapeptide
is not (Haugen & Lipscomb, 1969). Other studies
(Epand, 1972) have also indicated that retention of
biological activity is unimpaired by the loss of C-
terminal residues. Thus it is possible that, at 28°C
rather than 45°C, the C-terminal end of glucagon may
possess a more random and proteolytically suscept-
ible conformation than the remainder of the molecule.
The peptide bonds hydrolysed lend further support
to the proposal that thermomycolase prefers to bind
to hydrophobic amino acids on both sides of the
scissile bond. The favoured interaction of apolar
residues with sub-site S2 was again indicated, since
phenylalanine-22 and tryptophan-25 are two residues
removed from the scissile bonds glutamine-24-
tryptophan-25 and methionine-27-asparagine-28 res-
pectively. Portions of the digest analysed after 1 min
indicate that the latter peptide bond was the first to be
hydrolysed. This also agrees with the observed
favourable binding of methionine in the S2 subsite of
thermomycolase (Ong & Gaucher, 1975).

The brief digested of the oxidized A and B chains of
insulin by thermomycolase at 25°C (below
optimum) led to the ready hydrolysis of two peptide
bonds in the oxidized A chain (Table 4) and only a
single bond in the oxidized B chain (Table 5). Con-
ducting the digestion of the B chain of insulin at 45°C
led to the ready hydrolysis of two additional peptide
bonds and another two partial cleavages (Table 6).
An observed restriction in specificity at a lower
temperature was also reported for the digestion of the
oxidized chains of insulin at 0°C and 25°C by asper-
gillopeptidase B produced by the mesophilic fungus,
Aspergillus oryzae (Morihara & Tsuzuki, 1969;
Spadari et al., 1974).

Again the presence of apolar residues on both sides
of the scissile bond was observed during the digestion
of the oxidized A and B chains of insulin by thermo-
mycolase at 25°C (Tables 4 and 5). A similar situation
was observed for the oxidized B chain of insulin when
digested at 45°C (Table 6). The extensive hydrolysis
of leucine-15-tyrosine-16 undoubtedly preceded the
hydrolysis of glutamic acid-13-alanine-14 in the
sequence -His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-.

The inhibition of thermomycolase with Dip-F, p-
nitrobenzenesulphonyl fluoride, diphenylcarbamoyl
chloride and tosyl fluoride suggests that at least part
of the binding site is hydrophobic in nature. The
absorption of thermomycolase on to a 4-phenylbutyl-
amine-Sepharose affinity column during the puri-
ification further substantiates this view (Ong &
Gaucher, 1972, 1975). This affinity column has been
utilized to isolate chymotrypsin-like enzymes (Stev-
son & Landman, 1971) as well as in 'hydrophobic'
chromatography (Hofstee, 1973).
Table 9. Hydrolysis of the oxidized B chain of insulin by various alkaline 'serine' proteinases

Solid arrows (†) denote major cleavage, broken arrows (†) represent minor cleavages. The conditions of the digests differ in each case.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermomycocase (25°C, pH 9.0, 5 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomycocase (45°C, pH 9.0, 5 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase B (0°C, pH 10.2, 30 min) (Spadari et al., 1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase B (25°C, pH 9.2, 2 h) (Morihara & Tsuzuki, 1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase C (35°C, pH 7.2, 2 h) (Nordwig & Jahn, 1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Aspergillus flavus (37°C, pH 8.5, 1 h) (Turková & Mikes, 1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Cephalosporium sp. (37°C, pH 10.5, 10 h) (Yagi et al., 1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian elastases [porcine (25°C, pH 8.8, 15 min) (Narayanan & Anwar, 1969) mouse (37°C, pH 8, 15 min)] (Stevenson & Voordouw, 1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Lytic proteinase from Sorangium (25°C, pH 9, 1 h) (Whitaker et al., 1965)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces fradiae lb (25°C, pH 9, 2-3 h) (Morihara & Tsuzuki, 1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcal proteinase (25°C, pH 7.6, 2.5 h) (Gerwin et al., 1966)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Pseudomonas aeruginosa (27°C, pH 8.0, 2 h) (Morihara & Tsuzuki, 1966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastase from Pseudomonas aeruginosa (27°C, pH 8.0, 5 h) (Morihara & Tsuzuki, 1966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from marine psychrophilic Pseudomonas sp. No. 548 (37°C, pH 8, 3 h) (Kato et al., 1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Streptococcal proteinase is a thiol proteinase and the substrate was the S-carboxymethylated B chain of insulin.

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermomycocase (25°C, pH 9.0, 5 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomycocase (45°C, pH 9.0, 5 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase B (0°C, pH 10.2, 30 min) (Spadari et al., 1974)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase B (25°C, pH 9.2, 2 h) (Morihara & Tsuzuki, 1969)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillopeptidase C (35°C, pH 7.2, 2 h) (Nordwig & Jahn, 1968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Aspergillus flavus (37°C, pH 8.5, 1 h) (Turková & Mikes, 1970)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Cephalosporium sp. (37°C, pH 10.5, 10 h) (Yagi et al., 1974)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian elastases [porcine (25°C, pH 8.8, 15 min) (Narayanan & Anwar, 1969) mouse (37°C, pH 8, 15 min)] (Stevenson & Voordouw, 1975)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Lytic proteinase from Sorangium (25°C, pH 9, 1 h) (Whitaker et al., 1965)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces fradiae lb (25°C, pH 9, 2-3 h) (Morihara & Tsuzuki, 1969)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcal proteinase (25°C, pH 7.6, 2.5 h) (Gerwin et al., 1966)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from Pseudomonas aeruginosa (27°C, pH 8.0, 2 h) (Morihara & Tsuzuki, 1966)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastase from Pseudomonas aeruginosa (27°C, pH 8.0, 5 h) (Morihara & Tsuzuki, 1966)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline proteinase from marine psychrophilic Pseudomonas sp. No. 548 (37°C, pH 8, 3 h) (Kato et al., 1974)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Streptococcal proteinase is a thiol proteinase and the substrate was the S-carboxymethylated B chain of insulin.
A comparison of the specificity of thermomycolase with selected mammalian, bacterial and fungal proteinases is shown in Table 9. In nearly all cases the conditions of the digests differ and thus exact comparisons of the specificity of the proteinases are difficult. Of particular note, however, were comparisons of thermomycolase with other extracellular proteinases produced by Aspergillus. The specificities of thermomycolase and Aspergillopeptidase B were markedly enhanced by performing digests at suboptimal temperatures.

The rapid hydrolysis of elastin–Congo Red, a substrate for mammalian elastases, indicated the elastase-like activity of thermomycolase. A comparison of the esterolytic activity towards Ac-Ala-O\textsubscript{Me} of thermomycolase and other alkaline proteinases from bacterial, fungal and mammalian sources is presented in Table 8. The ability to bind alanine to subsite \textit{S} \textsubscript{1} and also to subsites \textit{S} \textsubscript{2} and \textit{S} \textsubscript{3} was supported by the finding that alanine residues predominate in the interchain cross-links of elastin (Gerber & Anwar, 1974). Moreover, of the numerous synthetic amino acid esters investigated (Ong & Gaucher, 1975), Cbz-Ala-O\textsubscript{Np} was hydrolysed at the greatest rate, with Cbz-Tyr-O\textsubscript{Np} next. Of note was the excellent growth of \textit{M. pulchella}, and the attendant high production of thermomycolase, when elastin (1\% w/v) was the sole nutrient source in the fermentation medium. Casein and bovine serum albumin were inferior to elastin under the same conditions (Ong & Gaucher, 1975).

The moderate ‘collagenase-like’ activity of thermomycolase is implied, but not confirmed, by our studies. The ready hydrolysis of the synthetic peptide Cbz-Gly-Pro-Leu-Gly-Pro has been utilized as an assay for collagenase activity (Morihara, 1967). By this criterion, thermomycolase and alkaline ‘serine’ proteinases from \textit{Aspergillus melleus} and \textit{Streptomyces fradiae} (Morihara \textit{et al.}, 1971) have ‘collagenase-like’ activity. Although thermomycolase yielded peptides from a digest of native collagen, it is possible that the digestion was limited to the small non-helical portion of the three-chain collagen molecule. Since a true collagenase (e.g. clostridial collagenase) yields hydrolysis along the helical segments of native collagen (Seifter & Harper, 1971) and readily hydrolyses Cbz-Gly-Pro-Gly-Gly-Pro-Ala, the \textit{Malbranchea} and \textit{Aspergillus} proteinases are probably not true collagenases.

The failure of thermomycolase to liberate ninhydrin-positive material from keratin suggests that the enzyme does not possess ‘keratinase’ activity. Very poor growth of \textit{M. pulchella} and low production of thermomycolase were observed when keratin was used as the sole nutrient in the growth medium. Considering the amino acid sequence of a feather keratin (O’Donnell & Inglis, 1974), it is possible that thermomycolase caused limited hydrolysis but that the existence of numerous cystine residues prevented the release of peptides. The ready degradation of keratin has, however, been reported for an extracellular ‘serine’ proteinase (Protease K) produced by the fungus \textit{Tritirachium album} Libet (Ebeling \textit{et al.}, 1974). Further studies of the specificity of Protease K have not been reported.

It is difficult to identify the best experimental method of determining the detailed substrate specificity of a proteinase. The use of small synthetic substrates, which occupy two to three subsites, has the advantage of simplicity of interpretation if one assumes that the binding sites are indeed the same as those used in the binding of larger peptides and proteins. The use of larger substrates such as casein, followed by analysis of the \textit{C}-terminal residues of the peptide products, may overcome this difficulty, but inevitably lead to rather complex specificity patterns for residue \textit{P} \textsubscript{1} without a clear knowledge of how adjacent residues are important. The use of smaller peptides of known sequence, such as glucagon or the oxidized A and B chains of insulin appears to improve on both of the above problems, but in fact the overall complexity of the co-operative binding of six to seven amino acid residues is even more striking. With most proteinases of rather broad specificity the unambiguous ‘mapping’ of substrate specificity is not possible. This is most probably due to the fact that conformational changes in subsites are induced by the binding of substrates and are also influenced by changes in neighbouring subsites. Hence, as emphasized by Fruton (1974), subsites must be considered to be adaptable to a certain variation in the structure and properties of amino acid residues and must be considered capable of responding to interactions occurring at neighbouring subsites. Despite this complexity, however, it is possible to delineate some of the more prominent preferences of some proteinase subsites. Thus alkaline (Dip-F-sensitive) proteinases are more specific for amino acid residues, \textit{P} \textsubscript{1} (Morihara & Tsuzuki, 1969), whereas neutral (EDTA-sensitive) proteinases are specific for amino acid residues \textit{P} \textsubscript{1} (Morihara, 1967), and acid proteinases are specific for amino acid residues \textit{P} \textsubscript{1} and \textit{P} \textsubscript{1} (Oka & Morihara, 1973).

Thermomycolase undoubtedly possesses an extended active site which preferentially hydrolyses peptide bonds situated within stretches of predominantly non-polar amino acid residues. Like other fungal alkaline proteinases (especially those of \textit{Aspergillus} sp.), this proteinase exhibits a composite ‘chymotrypsin–elastase’-type specificity as well as some collagenase-like activity and no keratinase activity. Preliminary structural investigations (V. Dorian & K. J. Stevenson, unpublished work) indicate an ‘active-serine’ peptide sequence which resembles that of the subtilisin family of ‘serine’ proteinases.
The technical assistance of Mrs. Johanna Voordouw, Mrs. Kathryn Carter and Mrs. Betty Cowie is gratefully acknowledged. This research was supported by National Research Council of Canada Grants A 5859 and A 3588.

References

Cooney, D. G. & Emerson, R. (1964) Thermophilic Fungi, W. H. Freeman, San Francisco

Thompson, R. C. & Blout, E. R. (1973c) Biochemistry 12, 66–71

K. J. STEVENSON AND G. M. GAUCHER

1975