OFFICERS AND COMMITTEE, 1975–76

Chairman of the Committee
T. S. Work
Treasurer
D. F. Elliott
General Secretary
H. M. Keir
Publications Secretary
R. M. C. Dawson
Meetings Secretary
J. B. Lloyd
Assistant Meetings Secretary
H. F. Bradford

Committee
G. B. Ansell
B. A. Askonas, F.R.S.
H. S. Bachelard
K. Burton, F.R.S.
J. T. Dingle*
C. A. Fawson
C. Green
K. Griffiths
M. G. Harrington
J. N. Hawthorne
C. H. S. Hitchcock

J. J. Holbrook
H. K. King
R. J. B. King
T. F. Slater

*Ex officio Member of Committee; representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].
The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1975 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan. 145 1</td>
<td>15 Jan. 146 1</td>
</tr>
<tr>
<td>1 Feb. 145 2</td>
<td>15 Feb. 146 2</td>
</tr>
<tr>
<td>1 Mar. 145 3*</td>
<td>15 Mar. 146 3*</td>
</tr>
<tr>
<td>1 Apr. 147 1</td>
<td>15 Apr. 148 1</td>
</tr>
<tr>
<td>1 May 147 2</td>
<td>15 May 148 2</td>
</tr>
<tr>
<td>1 June 147 3*</td>
<td>15 June 148 3*</td>
</tr>
<tr>
<td>1 July 149 1</td>
<td>15 July 150 1</td>
</tr>
<tr>
<td>1 Aug. 149 2</td>
<td>15 Aug. 150 2</td>
</tr>
<tr>
<td>1 Sept. 149 3*</td>
<td>15 Sept. 150 3*</td>
</tr>
<tr>
<td>1 Oct. 151 1</td>
<td>15 Oct. 152 1</td>
</tr>
<tr>
<td>1 Nov. 151 2</td>
<td>15 Nov. 152 2</td>
</tr>
<tr>
<td>1 Dec. 151 3*</td>
<td>15 Dec. 152 3*</td>
</tr>
</tbody>
</table>

* Completes volume, and includes Indexes.

Biochemical Society Transactions. This is now a separate publication (see below). Volume 3 will be published in 1975, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription in 1975 is £105.00. Subject to exchange variation the rate for U.S.A., Canada and Mexico is $265.00 (despatch by air freight to these countries).

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £10 ($25.00). The joint subscription is £113.00 ($280.00 to addressees in U.S.A., Canada and Mexico; both publications despatched by air freight).

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

(a) Microfilm (35 mm): Volumes 1–101.
(b) Microfiche (98-image): Volumes 102–144.

Details and prices are available on request from the Biochemical Society’s Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.
Index of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberti, K. G. M. M.</td>
<td>379</td>
</tr>
<tr>
<td>Ardaillou, R.</td>
<td>305</td>
</tr>
<tr>
<td>Arnstein, H. R. V.</td>
<td>419</td>
</tr>
<tr>
<td>Avi-Dor, Y.</td>
<td>405</td>
</tr>
<tr>
<td>Badawy, A. A.-B.</td>
<td>511</td>
</tr>
<tr>
<td>Baisted, D. J.</td>
<td>323</td>
</tr>
<tr>
<td>Baker, B.</td>
<td>345</td>
</tr>
<tr>
<td>Barritt, G. J.</td>
<td>389</td>
</tr>
<tr>
<td>Beatty, B. G.</td>
<td>463</td>
</tr>
<tr>
<td>Black, E.</td>
<td>495</td>
</tr>
<tr>
<td>Blackshear, P. J.</td>
<td>379</td>
</tr>
<tr>
<td>Blass, J. P.</td>
<td>397</td>
</tr>
<tr>
<td>Boffey, S. A.</td>
<td>433</td>
</tr>
<tr>
<td>Bremer, H.</td>
<td>469</td>
</tr>
<tr>
<td>Brown, R. H.</td>
<td>373</td>
</tr>
<tr>
<td>Brown, S. B.</td>
<td>565</td>
</tr>
<tr>
<td>Bunting, S.</td>
<td>335</td>
</tr>
<tr>
<td>Burnell, J. N.</td>
<td>527</td>
</tr>
<tr>
<td>Butler, M.</td>
<td>419</td>
</tr>
<tr>
<td>Bygrave, F. L.</td>
<td>389</td>
</tr>
<tr>
<td>Carson, E. R.</td>
<td>495</td>
</tr>
<tr>
<td>Clotscher, W. F.</td>
<td>413</td>
</tr>
<tr>
<td>Collins, N.</td>
<td>373</td>
</tr>
<tr>
<td>Cooke, B. A.</td>
<td>413</td>
</tr>
<tr>
<td>Cooper, P. H.</td>
<td>537</td>
</tr>
<tr>
<td>Coore, H. G.</td>
<td>553</td>
</tr>
<tr>
<td>Cox, R. B.</td>
<td>569</td>
</tr>
<tr>
<td>Darbre, A.</td>
<td>419</td>
</tr>
<tr>
<td>David, M.</td>
<td>405</td>
</tr>
<tr>
<td>Dawson, R. M. C.</td>
<td>521</td>
</tr>
<tr>
<td>del Favero, A.</td>
<td>573</td>
</tr>
<tr>
<td>Dennis, P. P.</td>
<td>469</td>
</tr>
<tr>
<td>Docter, R.</td>
<td>489</td>
</tr>
<tr>
<td>Donaldson, L. J.</td>
<td>557</td>
</tr>
<tr>
<td>Dorman, D. M.</td>
<td>389</td>
</tr>
<tr>
<td>Erfle, J. D.</td>
<td>357</td>
</tr>
<tr>
<td>Evans, M.</td>
<td>511</td>
</tr>
<tr>
<td>Fang, T.-Y.</td>
<td>323</td>
</tr>
<tr>
<td>Fuller, D. J. M.</td>
<td>557</td>
</tr>
<tr>
<td>Gamulin, S.</td>
<td>573</td>
</tr>
<tr>
<td>Gray, C. H.</td>
<td>573</td>
</tr>
<tr>
<td>Hannah, R.</td>
<td>329</td>
</tr>
<tr>
<td>Hawthorne, J. N.</td>
<td>537</td>
</tr>
<tr>
<td>Hazlewood, G. P.</td>
<td>521</td>
</tr>
<tr>
<td>Hennemann, G.</td>
<td>489</td>
</tr>
<tr>
<td>Hoffenberg, R.</td>
<td>495</td>
</tr>
<tr>
<td>Holloway, P. A. H.</td>
<td>379</td>
</tr>
<tr>
<td>Janszen, F. H. A.</td>
<td>413</td>
</tr>
<tr>
<td>John, P.</td>
<td>527</td>
</tr>
<tr>
<td>Jope, R.</td>
<td>397</td>
</tr>
<tr>
<td>King, R. F. G. J.</td>
<td>565</td>
</tr>
<tr>
<td>Lepreux, C.</td>
<td>305</td>
</tr>
<tr>
<td>Loreau, N.</td>
<td>305</td>
</tr>
<tr>
<td>Lotlikar, P. D.</td>
<td>561</td>
</tr>
<tr>
<td>Madeley, A.</td>
<td>315</td>
</tr>
<tr>
<td>Mahadevan, S.</td>
<td>357</td>
</tr>
<tr>
<td>Mak, W. W.-N.</td>
<td>463</td>
</tr>
<tr>
<td>Merrett, M. J.</td>
<td>373</td>
</tr>
<tr>
<td>Metcalfe, J.</td>
<td>495</td>
</tr>
<tr>
<td>Nadkarni, D.</td>
<td>495</td>
</tr>
<tr>
<td>Norman, M. R.</td>
<td>573</td>
</tr>
<tr>
<td>Northcote, D. H.</td>
<td>433</td>
</tr>
<tr>
<td>Peacock, A. C.</td>
<td>335</td>
</tr>
<tr>
<td>Petersburg, S. J.</td>
<td>315</td>
</tr>
<tr>
<td>Pollak, J. K.</td>
<td>477</td>
</tr>
<tr>
<td>Quayle, J. R.</td>
<td>569</td>
</tr>
<tr>
<td>Robinson, D. S.</td>
<td>315</td>
</tr>
<tr>
<td>Saggerson, E. D.</td>
<td>441</td>
</tr>
<tr>
<td>Sahib, M. K.</td>
<td>329</td>
</tr>
<tr>
<td>Sauer, F. D.</td>
<td>357</td>
</tr>
<tr>
<td>Shen, T.-F.</td>
<td>453</td>
</tr>
<tr>
<td>Sooranna, S. R.</td>
<td>441</td>
</tr>
<tr>
<td>Streckier, H. J.</td>
<td>453</td>
</tr>
<tr>
<td>Swann, P. F.</td>
<td>335</td>
</tr>
<tr>
<td>Tata, J. R.</td>
<td>345</td>
</tr>
<tr>
<td>Tavill, A. S.</td>
<td>495</td>
</tr>
<tr>
<td>Thomas, G. H.</td>
<td>557</td>
</tr>
<tr>
<td>Titheradge, M. A.</td>
<td>553</td>
</tr>
<tr>
<td>van der Does-Tobé, I.</td>
<td>489</td>
</tr>
<tr>
<td>van der Molen, H. J.</td>
<td>413</td>
</tr>
<tr>
<td>Visser, T. J.</td>
<td>489</td>
</tr>
<tr>
<td>Whatley, F. R.</td>
<td>527</td>
</tr>
<tr>
<td>Wong, J. T.-F.</td>
<td>463</td>
</tr>
<tr>
<td>Zaleski, K.</td>
<td>561</td>
</tr>
</tbody>
</table>
NOTES FOR CONTRIBUTORS

It is the policy of the Biochemical Journal to publish papers in English in all fields of biochemistry, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary or inconclusive experiments should not generally be described.

Two types of paper are accepted by the editors. Full-length papers. Papers submitted for publication should be sent, together with an extra copy of the synopsis, to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP. Typescripts should bear the name and address of the person to whom the proof of the paper is to be sent.

Papers submitted should be written concisely. Special attention is directed to the sections below concerning the preparation of the typescript. Typescripts that are not concise or do not conform to the conventions of the Biochemical Journal will be returned to the authors for revision. If a paper that has been returned to an author for revision is not resubmitted within one month, it will, on resubmission, be deemed to be a new paper and the date of receipt altered accordingly. A revised paper containing a significant amount of new material will also be redated.

Submission of a paper to the Editorial Board implies that it has been approved by all the named authors, that it reports unpublished work, that it is not under consideration for publication elsewhere, and that if accepted for the Biochemical Journal it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board.

Papers should be headed by a concise but informative full title, by the names of the authors (preferably with one forename in full for each author) and by the name and address of the establishment where the work was performed. Details of financial support appear in the acknowledgements at the end of the paper.

Before preparing papers authors should consult a current issue of the Journal to make themselves familiar with the general format, such as the use of cross-headings, lay-out of tables and citation of references. Papers should be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size and wide margins. The top copy should be submitted. It cannot be overemphasized that the need for revision of badly prepared typescripts inevitably leads to delays in publication.

Papers on specialized subjects should be presented so that they are intelligible to the ordinary reader of the Journal. Sufficient information must be included to permit repetition of the experimental work.

Short Communications. Typescripts should be submitted in duplicate, written in English, and conform strictly to the form of the Journal as far as spelling and abbreviations are concerned. Each Short Communication should be provided with a short synopsis (normally not exceeding 50 words). Such communications should not exceed 2400 words in length inclusive of the title, references etc. Authors may include up to two insertions such as tables, figures or schemes; in these cases authors must assess what proportion of a page these insertions will occupy and reduce the number of text words accordingly at the rate of 700 words per full page of the Journal. Authors are advised that the preparation of tables and especially figures is likely to cause a slight increase in publication time. Under no circumstances whatsoever can a complete Short Communication occupy more than four pages of the Journal. Papers should be complete in themselves; (1) the methods used in experimental work must be adequately described or sufficient reference given to allow repetition of the work; (2) sufficient indication of the results of experimental work must be included to justify the claims made. Communications should be addressed to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP.
Index of Authors

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberti, K. G. M. see Blackshear, P. J.</td>
<td>379-387</td>
</tr>
<tr>
<td>Ardaillou, R. see Loreau, N.</td>
<td>305-314</td>
</tr>
<tr>
<td>Arnstein, H. R. V. see Butler, M.</td>
<td>419-432</td>
</tr>
<tr>
<td>Ashby, J. P. & Speake, R. N.</td>
<td></td>
</tr>
<tr>
<td>Avi-Dor, Y. see David, M.</td>
<td>405-411; Shkedey-Vinkler, C.</td>
</tr>
<tr>
<td>Bach, B. & Kornberg, H. L.</td>
<td></td>
</tr>
<tr>
<td>Badawy, A. A.-B. & Badawy, P.</td>
<td></td>
</tr>
<tr>
<td>Baille, T. J. see Fang, T.-Y.</td>
<td>322-328</td>
</tr>
<tr>
<td>Baker, B. see Tata, J. R.</td>
<td>345-355</td>
</tr>
<tr>
<td>Ballard, F. J. see Gunn, J. M.</td>
<td>195-203</td>
</tr>
<tr>
<td>Barratt, G. J. see Dorman, D. M.</td>
<td>389-395</td>
</tr>
<tr>
<td>Baudhuan, P. see Pieters-Joris, C.</td>
<td>31-39</td>
</tr>
<tr>
<td>Beatty, B. G., Mak, W. W.-N. & Wong, J. T.-F.</td>
<td>Regulation of synthesis of ribosomal proteins during pyrimidine starvation in Escherichia coli</td>
</tr>
<tr>
<td>Bilodeau, J.-L. see Jothy, S.</td>
<td>133-135</td>
</tr>
<tr>
<td>Birt, L. M. see Campbell, A. J.</td>
<td>227-234</td>
</tr>
<tr>
<td>Blamey, R. W. see Powell-Jones, W.</td>
<td>71-75</td>
</tr>
<tr>
<td>Blass, J. P. see Jope, R.</td>
<td>397-403</td>
</tr>
<tr>
<td>Bozoff, S. A. & Northcote, D. H.</td>
<td>Pectin synthesis during the wall regeneration of plasmolysed tobacco leaf cells</td>
</tr>
<tr>
<td>Bragg, P. D. see Kay, W. W.</td>
<td>21-29</td>
</tr>
<tr>
<td>Brattsten, L. B. & Wilkinson, C. F.</td>
<td>Properties of 5-aminolaevulinic synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania)</td>
</tr>
<tr>
<td>Bremer, H. & Dalbow, D. G.</td>
<td></td>
</tr>
<tr>
<td>Bremer, H. & Dennis, P. P.</td>
<td></td>
</tr>
<tr>
<td>Bremer, H. see also Dalbow, D. G.</td>
<td>1-8</td>
</tr>
<tr>
<td>Brown, R. H. see Collins, N.</td>
<td>373-377</td>
</tr>
<tr>
<td>Bunting, S. see Swann, P. F.</td>
<td>335-344</td>
</tr>
<tr>
<td>Burnell, J. N., John, P. & Whately, F. R.</td>
<td>The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans</td>
</tr>
<tr>
<td>Butler, M., Darbre, A. & Arnstein, H. R. V.</td>
<td>Amino acids attached to transfer ribonucleic acid in vivo</td>
</tr>
<tr>
<td>Butters, T. D. & Hughes, R. C.</td>
<td></td>
</tr>
<tr>
<td>Bygrave, F. L. see Dorman, D. M.</td>
<td>389-395</td>
</tr>
<tr>
<td>Campbell, A. J. & Birt, L. M.</td>
<td></td>
</tr>
<tr>
<td>Carson, E. R. see Tagg, A. S.</td>
<td>495-509</td>
</tr>
<tr>
<td>Champsaur, H. see Jothy, S.</td>
<td>133-135</td>
</tr>
<tr>
<td>Chesters, J. K.</td>
<td></td>
</tr>
<tr>
<td>Colby, J. & Zatman, L. J.</td>
<td></td>
</tr>
<tr>
<td>Cooper, P. H. & Hawthorne, J. N.</td>
<td>Phosphomonoesterase hydrolysis of polyphosphoinositides in rat kidney. Properties and subcellular localization of the enzyme system</td>
</tr>
<tr>
<td>Cooke, H. G. see Titheradge, M. A.</td>
<td>553-556</td>
</tr>
<tr>
<td>Cox, R. B. & Quayle, J. R.</td>
<td></td>
</tr>
<tr>
<td>Dalbow, D. G. & Bremer, H.</td>
<td></td>
</tr>
<tr>
<td>Dalbow, D. G. see also Bremer, H.</td>
<td>9-12</td>
</tr>
<tr>
<td>Darbre, A. see Butler, M.</td>
<td>419-432</td>
</tr>
<tr>
<td>David, M. & Avi-Dor, Y.</td>
<td></td>
</tr>
<tr>
<td>Davies, P. see Powell-Jones, W.</td>
<td>71-75</td>
</tr>
<tr>
<td>Davies, R. C. see Sandy, J. D.</td>
<td>245-257</td>
</tr>
<tr>
<td>Dawson, R. M. C. see Hazelwood, G. P.</td>
<td>521-525</td>
</tr>
<tr>
<td>Delvalle, J. A. see MacDonnell, P. C.</td>
<td>269-273</td>
</tr>
<tr>
<td>Dennis, P. P. see Bremer, H.</td>
<td>469-475</td>
</tr>
<tr>
<td>Docter, R. see Visser, T. J.</td>
<td>489-493</td>
</tr>
<tr>
<td>Donaldson, L. J. see Fuller, D. J. M.</td>
<td>557-559</td>
</tr>
<tr>
<td>Dorman, D. M., Barratt, G. J. & Bygrave, F. L.</td>
<td>Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentrations</td>
</tr>
</tbody>
</table>

Vol. 150
DRUMMOND, A. H. & GORDON, J. L. Specific binding sites for 5-hydroxytryptamine on rat blood platelets 129-132

ERFLE, J. D. see SAUER, F. D. 357-372

EVANS, M. see BADAWY, A. A.-B. 511-520

FANG, T.-Y. & BAISTED, D. J. 2,3-Oxidosqualene cyclase and cytochrome P-450-dependent monoxygenase activities in vivo in the cotyledon and axis tissues of germinating pea seeds 323-328

FULLER, D. J. M., DONALDSON, L. J. & THOMAS, G. H. Ornithine decarboxylase activity and [14C]iododeoxyuridine incorporation in rat prostate 557-559

GAMULIN, S. see DEL FAVERO, A. 573-576

GARLICK, J. see MILLWARD, D. J. 235-243

GOODMAN, M. N. Effect of 3-mercaptopicolinic acid on gluconeogenesis and gluconeogenic metabolite concentrations in the isolated perfused rat liver 137-139

GORDON, J. L. see DRUMMOND, A. H. 129-132

GRAY, C. H. see DEL FAVERO, A. 573-576

GREENGARD, O. see MACDONNELL, P. C. 269-273

GRIFFITHS, K. see POWELL-JONES, W. 71-75

GUNN, J. M., HANSON, R. W., MEYUHAS, O., RESHEF, L. & BALLARD, F. J. Glucocorticoids and the regulation of the phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat 195-203

HANNAH, R. & SAHIB, M. K. Stabilization of rat liver tyrosine aminotransferase by tetracycline 329-333

HANSON, R. W. see GUNN, J. M. 195-203

HAWTHORNE, J. N. see COOPER, P. H. 537-551

HAZELWOOD, G. P. & DAWSON, R. M. C. Intermolecular transacylation of phosphatidylethanolamine by a Brevibacterium sp. 521-525

HEMS, D. A., RATH, E. A. & VERRINDER, T. R. Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle 167-173

HEMS, D. A. see also WHITTON, P. D. 153-165

HEMS, R., LUND, P. & KREBS, H. A. Rapid separation of isolated hepatocytes or similar tissue fragments for analysis of cell constituents 47-50

HENNEMANN, G. see VISser, T. J. 489-493

HEXT, P. M. & ROSE, F. A. The sulphation of p-hydroxyphenylpyruvic acid and related compounds by the rat liver cytosol 175-181

HOFFENBERG, R. see TAVILL, A. S. 495-509

HOLLOWAY, P. A. H. see BLACKSHEAR, P. J. 379-387

HUGHES, R. C. see BUTTERS, T. D. 59-69

ILIC, V. see WILLIAMSON, D. H. 145-152

JANSZEN, F. H. A. see COOKE, B. A. 413-418

JONES, D. A. see POWELL-JONES, W. 71-75

JOHN, P. see BURNELL, J. N. 527-536

JOPE, R. & BLASS, J. P. A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver 397-403

JOSEY, S., BIODEAU, J.-L., CHAMPSAUR, H. & SIMPKINS, H. The early enhancement of rat liver deoxyribonucleic acid-dependent ribonucleic acid polymerase II activity by tri-iodothyronine 133-135

KAPLOWITZ, N. see CLIFTON, G. 259-262

KAY, W. W. & BRAGG, P. D. Salmonella typhimurium HfrA, a mutant in which adenosine triphosphate can drive amino acid transport but not energy-dependent nicotinamide nucleotide transhydrogenation 21-29

KING, R. F. G. J. see BROWN, S. B. 565-567

KORNBERG, H. L. see BACI, B. 123-128

KREBS, H. A. see HEMS, R. 47-50; STUBBS, M. 41-45

KUHLENKAMP, J. see CLIFTON, G. 259-262

LEPREUX, C. see LOREAU, N. 305-314

LOREAU, N., LEPREUX, C. & ARDAILLOU, R. Calcitonin-sensitive adenylate cyclase in rat renal tubular membranes 305-314

LOTTIKAR, P. D. & ZALESKI, K. Ring- and N-hydroxylation of 2-acetamidofluorene by rat liver reconstituted cytochrome P-450 enzyme system. 561-564

LUND, P. see HEMS, R. 47-50

MACDONNELL, P. C., RYDER, E., DELVALLE, J. A. & GREENGARD, O. Biochemical changes in cultured foetal rat liver explants 269-273

MADELEY, A. see PETERSBURG, S. J. 315-321

MAHDEVAN, S. see SAUER, F. D. 357-372

MAK, W. W.-N. see BEATTY, B. G. 463-468

MAYOR, F. see MORENO, F. J. 51-58

MCGIVAN, J. D. see M Os, K. M. 275-283

MEDINA, J. M. see WILLIAMSON, D. H. 145-152

MEIER, A. J., VAN WOERKOM, G. M., WILLIAMSON, J. R. & TAGER, J. M. Rate-limiting factors in the oxidation of ethanol by isolated rat liver cells 205-209

MERRETT, M. J. see COLLINS, N. 373-377

METCALFE, J. see TAVILL, A. S. 495-509

MEYUHAS, O. see GUNN, J. M. 195-203

MORENO, F. J., SÁNCHEZ-URRUTIA, L., MEDINA, J. M., SÁNCHEZ-MEDINA, F. & MAYOR, F. Stimulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) activity by low concentrations of circulating glucose in perfused rat liver 51-58

Moss, K. M. & MCGIVAN, J. D. Characteristics of aspartate deamination by the purine nucleotide cycle in the cytosol fraction of rat liver 275-283

NADKARNI, D. see TAVILL, A. S. 495-509

 namboodiri, M. A. A. & RASAMARThA, T. Effect of environmental stress of low pressure on tyrosine aminotransferase and phenylalanine 4-hydroxylase activities in the rat 263-268

NEUBERGER, A. see SANDY, J. D. 245-257

NEWSHOLME, E. A. see SUGDEN, P. H. 105-111, 113-122

NNANYELUGO, D. O. see MEDINA, J. M. 235-243

NORMAN, M. R. see DEL FAVERO, A. 573-576

NORTHCOE, D. H. see BOFFEY, S. A. 433-440

INDEX OF AUTHORS

1975
Index of Subjects

2-Acetimidofluorene, ring- and N-hydroxylation of, by a reconstituted cytochrome P-450 enzyme system from rat liver microsomal fraction (Lotlikar, P. D. & Zaleski, K.) 561–564

Acetoacetate, metabolic interactions of insulin, glucose and, in lactating rat mammary-gland slices (Williamson, D. H., McKeown, S. R. & Ilic, V.) 145–152

Actinomycin D, comparison of the effects of, and of deprivation of zinc ions on the biosynthesis of ribonucleic acid by stimulated pig lymphocytes (Chesters, J. K.) 211–218

N-Acylphosphatidylethanolamine, intermolecular transacylation of phosphatidylethanolamine to form lyso-phosphatidylethanolamine and, by a Butyrivibrio sp. (Hazlewood, G. P. & Dawson, R. M. C.) 521–525

Adenine nucleotides, regulation by reduced nicotinamide-adenine dinucleotide, 2-oxoglutarate and, of the activity of citrate synthase in various methylotrophic bacteria (Colby, J. & Zatman, L. J.) 141–144

Adenosine 3':5'-cyclic monophosphate, role of, in the induction of the catabolism of gluconate in Escherichia coli K12 (Bächi, B. & Kornberg, H. L.) 123–128

Adenosine 3':5'-cyclic monophosphate, role of, in the stimulation of the activity of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in perfused rat liver by low concentrations of glucose in the perfusion medium (Moreno, F. J., Sánchez-Urrutia, L., Medina, J. M., Sánchez-Medina, F. & Mayor, F.) 51–58

Adenosine triphosphate, ability of, to drive the transport of amino acids but not the energy-dependent transhydrogenation of nicotinamide-adenine dinucleotide (phosphate) in Salmonella typhimurium strain HfrA (Kay, W. W. & Bragg, P. D.) 21–29

Adenylate deaminase, activities of, and other components of the purine nucleotide cycle in rat liver cytosol fraction (Moss, K. M. & McGivan, J. D.) 275–283

Adipocytes, epididymal, rat, isolated, role of insulin in the regulation of the biosynthesis of glycerides in (Sooaranna, S. R. & Saggerson, E. D.) 441–451

Adipose tissue, epididymal, rat, role of insulin in the regulation of the biosynthesis of glycerides in (Sooaranna, S. R. & Saggerson, E. D.) 441–451

Adipose tissue, mouse, biosynthesis of fatty acids in, and liver of normal and genetically obese ob/ob animals during the 24-hour diurnal cycle (Hems, D. A., Rath, E. A. & Verrinder, T. R.) 167–173

Alanine, amino transferase, activities of, and other enzymes associated with the tricarboxylic acid cycle in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105–111

Alanine, device for the rapid separation of isolated hepatocytes or similar tissue fragments for determination of the concentrations of, and other cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47–50

Alanine, effect of 3-mercaptopicolinate on gluconeogenesis from, in isolated perfused rat liver (Goodman, M. N.) 137–139

Alanine, factors regulating the release of glutamine and, from extrasplanchic tissues in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379–387

Albumin, plasma, mathematical modelling of the dynamics of the incorporation of radioactivity from [14C]-carbonate into urea and the guanidine moiety of arginine residues of, in isolated perfused rat liver (Tavill, A. S., Nadkarni, D., Metcalfe, J., Black, E., Hoffenberg, R. & Carson, E. R.) 495–509

Amino acids, ability of adenosine triphosphate to drive the transport of, but not the energy-dependent transhydrogenation of nicotinamide-adenine dinucleotide (phosphate) in Salmonella typhimurium strain HfrA (Kay, W. W. & Bragg, P. D.) 21–29

Amino acids, activities of enzymes associated with the tricarboxylic acid cycle and the metabolism of, in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105–111

Amino acids, analysis of, attached to rabbit liver transfer ribonucleic acid in vivo (Butler, M., Darbre, A. & Arnstein, H. R. V.) 419–432

Amino acids, biosynthesis of, in cultures of mixed rumen micro-organisms (Sauer, F. D., Erle, J. D. & Mahadevan, S.) 357–372

Amino acids, effects of inhibitors on the biosynthesis of protein and on the pool of, in the blowfly Lucilia cuprina (Campbell, A. J. & Birt, L. M.) 227–234

Amino acids, factors regulating the release of, from extrasplanchic tissues in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379–387

Aminoacyl-transfer ribonucleic acid, liver, rabbit, analysis of the amino acid components of, in vivo (Butler, M., Darbre, A. & Arnstein, H. R. V.) 419–432

4-Aminobutyrate, conversion of threonine into, and other amino acids in rat brain during thiamin deficiency (Gaitonde, M. K.) 285–295

5-Aminolevulinate, effects of the administration of haematin and of, and comparison of the substrate and hormonal mechanisms for the regulation of the activity of tryptophan pyrrolase by its cofactor haem in rat liver (Badawy, A. A.-B. & Evans, M.) 511–520

5-Aminolevulinate synthetase, properties of, and its relationship to the activity of microsomal mixed-function oxidases in the southern armyworm (Brunner, L. B. & Wilkinson, C. F.) 97–104

5-Aminolevulinate synthetase, role of trisulphides in the control of the activity of, in Rhodospseudomonas spheroides N.C.I.B. 8253 (Sandy, J. D., Davies, R. C. & Neuberger, A.) 245–257
Ammonium ions, effects of inorganic phosphate, potassium ions and, on the activity of phosphofructokinase of muscle and nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 113-122

Ammonium lactate, formation of aspartate from, by isolated rat hepatocytes in the presence of ethanol (Stubbs, M. & Krebs, H. A.) 41-45

Arabinose, incorporation of, into pectin during the regeneration of the cell walls of plasmolysed tobacco-leaf cells (Boffey, S. A. & Northcote, D. H.) 433-440

Arginine, conversion of glutamate and, into proline and hydroxyproline in cultured human WI-38 lung fibroblasts (Shen, T.-F. & Strecker, H. J.) 453-461

Arginine residues, mathematical modelling of the dynamics of the incorporation of radioactivity from [14C]carbonate into urea and the guanidine moiety of, of plasma albumin in isolated perfused rat liver (Tavill, A. S., Nadkarni, D., Metcalfe, J., Black, E., Hoffenberg, R. & Carson, E. R.) 495-509

Aspartate, accumulation of, in the presence of ethanol in rat liver (Stubbs, M. & Krebs, H. A.) 41-45

Aspartate aminotransferase, activities of, and other enzymes associated with the tricarboxylic acid cycle in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105-111

Aspartate aminotransferase, changes in the activities of, and other enzymes during culture of foetal rat liver explants (MacDonnell, P. C., Ryder, E., Delvalle, J. A. & Greengard, O.) 269-273

Aspartate, characteristics of the deamination of, by the purine nucleotide cycle in rat liver cytosol fraction (Moss, K. M. & McGivan, J. D.) 275-283

Aspartate, conversion of threonine into, and other amino acids in rat brain during thiamin deficiency (Gaitonde, M. K.) 285-295

Aspartate, device for the rapid separation of isolated hepatocytes or similar tissue fragments for determination of the concentrations of, and other cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47-50

Axis tissues, pea-seeding, germinating, activities of 2,3-oxidosqualene cyclase and cycloartenol-S-adenosyl-methionine methyltransferase in, and cotyledons in vivo (Fang, T.-Y. & Baisted, D. J.) 323-328

Bacillus PM6, regulation by reduced nicotinamide-adenine dinucleotide, adenosine nucleotides and 2-oxoglutarate of the activity of citrate synthase in, and other methylotrophs (Colby, J. & Zatman, L. J.) 141-144

Bacterium, halotolerant, betaine-induced stimulation of respiration at high osmolalities in (Shkedky-Vinkler, C. & Avi-Dor, Y.) 219-226

Benzo[α]pyrene, induction by, of the activities of glutathione S-transferases in rat kidney (Clifton, G., Kaplowitz, N., Wallin, J. D. & Kuhlenkamp, J.) 250-262

Betaine, induction by, of the stimulation of respiration at high osmolalities in a halotolerant bacterium (Shkedky-Vinkler, C. & Avi-Dor, Y.) 219-226

Bilirubin, use of [18,18O2]oxygen in a double-labelling study of the catabolism of haemoglobin to, in the rat (Brown, S. B. & King, R. F. G. J.) 565-567

Blood, effect of functional hepatectomy on the release of alanine and glutamine from extrasplanchnic tissues into, in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379-387

Blood platelets, see Platelets

Blowfly (Lucilia cuprina), effects of inhibitors in vivo on the biosynthesis of protein and on the amino acid pool in (Campbell, A. J. & Birt, L. M.) 227-234

Brain, rat, regulation of the conversion of pyruvate dehydrogenase in mitochondria from, and liver (Jope, R. & Blass, J. P.) 397-403

Brain, rat, conversion of threonine into other amino acids in, during thiamin deficiency (Gaitonde, M. K.) 285-295

Breast tumours, human, influence of anti-oestrogens on the specific binding in vivo of oestriol by cytosol from rat mammary-gland tumours and (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71-75

Butyrylchlo ro sp., intermolecular transacetylation of phosphatidylethanolamine to form N-acylphosphatidy ethanolamine and lysophosphatidylethanolamine by (Hazlewood, G. P. & Dawson, R. M. C.) 521-525

Calcitonin, sensitivity of the activity of adenylate cyclase in rat kidney-tubule membranes to (Loreau, N., Lepreux, C. & Ardaillou, R.) 305-314

Calcium ionophores, effects of, on the secretion of insulin and glucagon by isolated rat islets of Langerhans (Ashby, J. P. & Speake, R. N.) 89-96

Calcium ions, stimulation by elevated plasma concentrations of insulin of the transport of, by rat liver mitochondria (Dorman, D. M., Barritt, G. J. & Bygrave, F. L.) 389-395

[14C]Carbonate, mathematical modelling of the dynamics of the incorporation of radioactivity from, into urea and the guanidine moiety of arginine residues of plasma albumin in isolated perfused rat liver (Tavill, A. S., Nadkarni, D., Metcalfe, J., Black, E., Hoffenberg, R. & Carson, E. R.) 495-509

Carboxylation, reductive formation of 2-oxo acid precursors of amino acids by, in cultures of mixed rumen micro-organisms (Sauer, F. D., Erfle, J. D. & Mahadevan, S.) 357-372

Cell wall, biosynthesis of pectin during the regeneration of, of plasmolysed tobacco-leaf cells (Boffey, S. A. & Northcote, D. H.) 433-440

Cells, heart-muscle, rat, cultured, stimulation by glucose of the biosynthesis of protein in (David, M. & Avi-Dor, Y.) 405-411

Cells, KB, human, iodination and fractionation of the glycoproteins of the plasma membrane of (Butters, T. D. & Hughes, R. C.) 59-69

INDEX OF SUBJECTS

583

Cells, liver, isolated, device for the rapid separation of, or similar tissue fragments for determination of the concentrations of cell constituents (Hems, R., Lund, P., & Krebs, H. A.) 47–50

Cells, liver, rat, isolated, formation of aspartate from ammonium lactate by, in the presence of ethanol (Stubbis, M. & Krebs, H. A.) 41–45

Cells, tobacco-leaf, plasmolysed, biosynthesis of pectin during the regeneration of the cell walls of (Boffey, S. A. & Northcote, D. H.) 433–440

Chick embryo, isolation and characterization of an oestrogen receptor protein from Müllerian duct of (Teng, C. S. & Teng, C. T.) 183–190

Chick embryo, ontogeny of the cytoplasmic oestrogen receptor protein in Müllerian duct of (Teng, C. S. & Teng, C. T.) 191–194

Chick, uptake of glutamate by retina from (Tunnicliff, G.) 297–299

Citrate synthase, activities of, and other enzymes associated with the tricarboxylic acid cycle in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105–111

Citrate synthase, regulation by reduced nicotinamide adenine dinucleotide, adenine nucleotides and 2-oxoglutarate of the activity of, in various myelotrophic bacteria (Colby, J. & Zatman, L. J.) 141–144

Citric acid cycle, see Tricarboxylic acid cycle

Corpus luteum, pig, biosynthesis of progestosterone by, during superfusion (Watson, J. & Wrigglesworth, P. M.) 301–304

Cotyledons, pea-seedling, germinating, activities of 2,3-oxidosqualene cyclase and cycloartenol-5-adenosylmethionine methyltransferase in, and axis tissues in vivo (Fang, T.-Y. & Baisted, D. J.) 323–328

α-Cyano-3-hydroxycinnamate, role of, in the biosynthesis of amino acids (Blackshear, J. & Zatman, L. J.) 323–328

Cysteine, role of the trisulphide analogue of, and other thiolipids in the control of the activity of 5-aminoalvulinate synthetase in Rhodopseudomonas spheroides N.C.I.B. 8253 (Sandy, J. D., Davies, R. C. & Neuberger, A.) 245–257

Cytochrome P-450, ring- and N-hydroxylation of 2-acetamidofluorene by a reconstituted enzyme system containing, from rat liver microsomal fraction (Lotlikar, P. D. & Zaleski, K.) 561–564

Cytochrome, breast-tumour, human, influence of anti-oestrogens on the specific binding in vivo of oestriadiol (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71–75

Cytosol, liver, rat, characteristics of the deamination of aspartate by the purine nucleotide cycle in (Moss, K. M. & McGivan, J. D.) 275–283

Cytosol, liver, rat, localization of superoxide dismutase in, and mitochondria (Peeters-Joris, C., Vandevoorde, A.-M. & Baudhuin, P.) 31–39

Cytosol, liver, rat, sulphation of p-hydroxyphenylpyruvate and related compounds by (Hext, P. M. & Rose, F. A.) 175–181

Cytosol, mammary-gland-tumour, rat, influence of anti-oestrogens on the specific binding in vivo of oestradiol by (Powell-Jones, W., Jenner, D. A., Blaney, R. W., Davies, P. & Griffiths, K.) 71–75

2-Deoxy-5-iodouridine, relationship between the activity of ornithine decarboxylase and the incorporation of, in rat ventral and dorsolateral prostate glands (Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 557–559

Development, embryonic, ontogeny of the cytoplasmic oestrogen receptor protein in Müllerian duct of the chick during (Teng, C. S. & Teng, C. T.) 191–194

Development, foetal, acid neonatal, positive-feedback control of the maturation of the inner membrane of rat liver mitochondria during (Pollak, J. K.) 477–488

Diabetes, streptozotocin-, biosynthesis of glycogen in perfused rat liver during (Whitton, P. D. & Hems, D. A.) 153–165

Diabetes, streptozotocin-, metabolic interactions of glucose, acetate and insulin in lactating rat mammary-gland slices during (Williamson, D. H., McKeown, S. R. & Ilic, V.) 145–152

Dichloroacetate, effect of, on the release of amino acids from extraplastchionic tissues in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379–387

Diet, effect of, on the release of the triacylglycerol and protein components of very-low-density lipoproteins by perfused rat liver (Petersburg, S. J., Madeley, A. & Robinson, D. S.) 315–321

Diethyl pyrocarbonate, use of, for the extraction of transfer ribonucleic acid with attached amino acids from rabbit liver (Butler, M., Darbre, A. & Arnstein, H. R. V.) 419–432

Diphosphoinositide phosphatase, kidney, rat, properties and subcellular localization of, and triphosphoinositide phosphatase (Cooper, P. H. & Hawthorne, J. N.) 537–551

Egg-yolk protein, differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by oestradiol-17β of the biosynthesis of, in male Xenopus laevis liver (Tata, J. R. & Baker, B.) 345–355

Epididymis, rat, role of insulin in the regulation of the biosynthesis of glycerides in adipose tissue of (Sooarana, S. R. & Saggerson, E. D.) 441–451

Escherichia coli A.T.C.C. 12632, regulation of the biosynthesis of ribosomal proteins in, during deprivation of pyrimidines (Beatty, B. G., Mak, W. W.-N. & Wong, J. T.-F.) 463–468

Escherichia coli B/r, activities of genes coding for ribosomal ribonucleic acid and ribosomal proteins in (Bremer, H. & Dennis, P. P.) 469–475

Vol. 130
INDEX OF SUBJECTS

Escherichia coli B/r A.T.C.C. 12407, regulatory state of the genes controlling the synthesis of ribosomes and physiological changes in the concentration of free ribonucleic acid polymerase in (Bremer, H. & Dalbow, D. G.) 9–12

Escherichia coli B/r A.T.C.C. 12407, relationship between the rate of biosynthesis of β-galactosidase and the rate of growth in (Dalbow, D. G. & Young, R.) 13–20

Escherichia coli B/r A.T.C.C. 12407, relationship between the rate of constitutive synthesis of ribosomes and the rate of biosynthesis of β-galactosidase in (Dalbow, D. G. & Bremer, H.) 1–8

Escherichia coli K12, role of adenosine 3′:5′-cyclic monophosphate in the induction of the catabolism of gluconate in (Bächli, B. & Kornberg, H. L.) 123–128

Estradiol, see Oestradiol

Estrogens, see Oestrogens

Ethanol, accumulation of aspartate in the presence of, in rat liver (Stubbs, M. & Krebs, H. A.) 41–45

Ethionine, effect of, on the biosynthesis of ribonucleic acid in rat liver (Swann, P. F., Peacock, A. C. & Bunting, S.) 335–344

Ethoxyformic anhydride, see Diethyl pyrocarbonate

Euglena gracilis, phototrophic, oxidative phosphorylation during the metabolism of glycogen in mitochondria from (Collins, N., Brown, R. H. & Merrett, M. J.) 373–377

Fat-cells, epididymal, rat, isolated, role of insulin in the regulation of the biosynthesis of glycerides in (Sooarana, S. R. & Saggerson, E. D.) 441–451

Fatty acids, long-chain, biosynthesis of, in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour diurnal cycle (Hems, D. A., Rath, E. A. & Verrinder, T. R.) 167–173

Fatty acids, role of insulin in the regulation of the biosynthesis of, in rat epididymal adipose tissue (Sooarana, S. R. & Saggerson, E. D.) 441–451

Fatty acids, role of intermediates in the β-oxidation of, by rat liver mitochondria (Stanley, K. K. & Tubbs, P. K.) 77–88

Fibroblasts, lung, WI-38, human, cultured, biosynthesis of proline and hydroxyproline in (Shen, T.-F. & Streecker, H. J.) 453–461

Fructose, effect of, on the biosynthesis of glycogen in perfused rat liver during streptozotocin-induced diabetes (Whitton, P. D. & Hems, D. A.) 153–165

β-Galactosidase, relationship between the rate of biosynthesis of, and rate of growth in Escherichia coli B/r A.T.C.C. 12407 (Dalbow, D. G. & Young, R.) 13–20

β-Galactosidase, relationship between the rate of constitutive synthesis of ribosomes and the rate of biosynthesis of, in Escherichia coli B/r A.T.C.C. 12407 (Dalbow, D. G. & Bremer, H.) 1–8

Genes, activities of, coding for ribosomal ribonucleic acid and ribosomal proteins in Escherichia coli B/r (Bremer, H. & Dennis, P. P.) 469–475

Genes, regulatory state of, controlling the synthesis of ribosomes and physiological changes in the concentration of free ribonucleic acid polymerase in Escherichia coli B/r A.T.C.C. 12407 (Bremer, H. & Dalbow, D. G.) 9–12

Germination, activities of 2,3-oxidosqualene cyclase and cycloarten-S-adenosylmethionine methyltransferase in the cotyledon and axis tissues of pea seedlings in vivo during (Fang, T.-Y. & Baisted, D. J.) 323–328

Glucagon, effects of calcium ionophores on the secretion of insulin and, by isolated rat islets of Langerhans (Ashby, J. P. & Speake, R. N.) 89–96

Glucocorticoids, role of, in the regulation of the biosynthesis and degradation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in rat liver and kidney in vivo (Gunn, J. M., Hanson, R. W., Meyuhas, O., Reshef, L. & Ballard, F. J.) 195–203

Glucocorticoid, role of adenosine 3′:5′-cyclic monophosphate in the induction of the catabolism of, in Escherichia coli K12 (Bächli, B. & Kornberg, H. L.) 123–128

Glucogeneosis, effects of 3-mercaptopicolinate on, and the concentrations of glucogeneic metabolites in isolated perfused rat liver (Goodman, M. N.) 137–139

Glucogeneosis, stimulation of the activity of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in perfused rat liver by low concentrations of glucose in the perfusion medium and its role in the regulation of (Moreno, F. J., Sánchez-Urrutia, L., Medina, J. M., Sánchez-Medina, F. & Mayor, F.) 51–58

Glucose, effect of 3-mercaptopicolinate on the formation of, in isolated perfused rat liver (Goodman, M. N.) 137–139

Glucose, minor role of, in the biosynthesis of fatty acids in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour diurnal cycle (Hems, D. A., Rath, E. A. & Verrinder, T. R.) 167–173

Glucose, stimulation by, of the biosynthesis of protein in cultured rat heart-muscle cells (David, M. & Avi-Dor, Y.) 405–411

Glucose, stimulation of the activity of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in perfused rat liver by low concentrations of, in the perfusion medium (Moreno, F. J., Sánchez-Urrutia, L., Medina, J. M., Sánchez-Medina, F. & Mayor, F.) 51–58

Glutamate, conversion of arginine and, into proline and hydroxyproline in cultured human WI-38 lung fibroblasts (Shen, T.-F. & Streecker, H. J.) 453–461

Glutamate, conversion of threonine into, and other amino acids in rat brain during thiamin deficiency (Gaitonde, M. K.) 285–295

Glutamate dehydrogenase, activities of, and other enzymes associated with the tricarboxylic acid cycle in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105–111

Glutamate dehydrogenase, changes in the activities of, and other enzymes during culture of foetal rat liver explants (MacDonnell, P. C., Ryder, E., Delvalle, J. A. & Greengard, O.) 269–273
INDEX OF SUBJECTS

Glutamate, device for the rapid separation of isolated hepatocytes or similar tissue fragments for determination of the concentrations of, and other cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47-50

Glutamate, uptake of, by chick retina (Tunnicliff, G.) 297–299

Glutamine, conversion of threonine into, and other amino acids in rat brain during thiamin deficiency (Gaitonde, M. K.) 285–295

Glutamine, factors regulating the release of alanine and, from extrasplanchnic tissues in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379–387

Glutathione S-transferases, role (Tunnicliff, G.) 379–387

Glycerides, role (Sandy, P. D. & Rose, F.) 41–45

Glycogen, glycogen, oxidative effects of (Whitton, P. H.) 59-69

Glycogen, biosynthesis and degradation of, in perfused rat liver during streptozotocin-induced diabetes (Whiton, P. D. & Hems, D. A.) 153–165

Glycogen synthetase, activity of, in perfused rat liver during streptozotocin-induced diabetes (Whiton, P. D. & Hems, D. A.) 153–165

Glycine, oxidative phosphorylation during the metabolism of, in Euglena gracilis mitochondria (Collins, N., Brown, R. H. & Merrett, M. J.) 373–377

Glycolysis, effects of ammonium ions and inorganic phosphate on the activity of phosphofructokinase and their role in the regulation of, in muscle and nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newholme, E. A.) 113–122

Glycoproteins, iodination and fractionation of, of the plasma membrane of human tumour KB cells (Butters, T. D. & Hughes, R. C.) 59–69

Gonadotrophin, stimulation by, of the biosynthesis of progesterone by pig corpus luteum tissue during superfusion (Watson, J. & Wrigglesworth, P. M.) 301–304

Growth, rates of the biosynthesis and degradation of protein during, of rat skeletal muscle (Millard, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C.) 235–243

Growth, relationship between the rate of biosynthesis of β-galactosidase and the rate of, in Escherichia coli B/r A.T.C.C. 12407 (Dalbow, D. G. & Young, R.) 13–20

Haem, effects of the administration of haematin and of 5-aminolaevulinate and comparison of the substrate and hormonal mechanisms for the regulation of the activity of tryptophan pyrrolylase by its cofactor haem in rat liver (Badawy, A. A.-B. & Evans, M.) 511–520

Heart-muscle cells, rat, cultured, stimulation by glucose of the biosynthesis of protein in (David, M. & Avi-Dor, Y.) 405–411

Hepatectomy, functional, effect of, on the release of alanine and glutamine from extrasplanchnic tissues in the rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 379–387

Hepatocytes, isolated, device for the rapid separation of, or similar tissue fragments for determination of the concentrations of cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47–50

Hepatocytes, rat, isolated, formation of aspartate from ammonium lactate by, in the presence of ethanol (Stubbbs, M. & Krebs, H. A.) 41–45

Hexokinase, changes in the activities of, and other enzymes during culture of foetal rat liver explants (MacDonnell, P. C., Ryder, E., Delvalle, J. A. & Greengard, O.) 269–273

Homogentisate, sulphation of, by rat liver cytosol (Hext, P. M. & Rose, F. A.) 175–181

p-Hydroxybenzaldehyde, sulphation of, by rat liver cytosol (Hext, P. M. & Rose, F. A.) 175–181

p-Hydroxybenzyl alcohol, sulphation of, by rat liver cytosol (Hext, P. M. & Rose, F. A.) 175–181

p-Hydroxyphenylpyruvate, sulphation of, and related compounds by rat liver cytosol (Hext, P. M. & Rose, F. A.) 175–181

Hydroxyproline, biosynthesis of proline and, in cultured human WI-38 lung fibroblasts (Shen, T.-F. & Strecke, H. J.) 453–461

5-Hydroxytryptamine, specific binding sites for, on rat platelets (Drummmond, A. H. & Gordon, J. L.) 129–132

Inorganic phosphate, see Phosphate, inorganic

Insulin, effects of calcium ionophores on the secretion of glucagon and, by isolated rat islets of Langerhans (Ashby, J. P. & Speake, R. N.) 89–96

Insulin, lack of direct action of, on the biosynthesis of glycogen in perfused rat liver during streptozotocin-induced diabetes (Whiton, P. D. & Hems, D. A.) 153–165

Insulin, metabolic interactions of glucose, acetocetate and, in lactating rat mammary-gland slices (Williamson, D. H., Mckeown, S. R. & Ilic, V.) 145–152

Insulin, role of, in the regulation by glucocorticoids of the biosynthesis and degradation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in rat liver and kidney in vivo (Gunn, J. M., Hanson, R. W., Meyuhas, O., Reshef, L. & Ballard, F. J.) 195–203

Insulin, role of, in the regulation of the biosynthesis of glycerides in rat epididymal adipose tissue (Sooanna, S. R. & Saggerson, E. D.) 441–451

Vol. 150
Insulin, stimulation by elevated plasma concentrations of, of the transport of calcium ions by rat liver mitochondria (Dorman, D. M., Barritt, G. J. & Bygrave, F. L.) 389-395

5-Iodo-2-deoxyuridine, see 2-Deoxy-5-iodouridine

Islets of Langerhans, pancreas, rat, isolated, effects of calcium ionophores on the secretion of insulin and glucagon by (Ashby, J. P. & Speake, R. N.) 89-96

Isocitratedehydrogenases, nicotinamide-adenine dinucleotide-linked and nicotinamide-adenine nucleotide phosphate-linked, activities of, and other enzymes associated with the tricarboxylic acid cycle in nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105-111

KB cells, human, iodination and fractionation of the glycoproteins of the plasma membrane of (Butters, T. D. & Hughes, R. C.) 59-69

Kidney, rat, induction by drugs and sex differences in the activities of glutathione S-transferases in (Clifton, G., Kaplowitz, N., Wallin, J. D. & Kuhlenkamp, J.) 259-262

Kidney, rat, properties and subcellular localization of the phosphatases catalysing the hydrolysis of polyphosphoinositides in (Cooper, P. H. & Hawthorne, J. N.) 537-551

Kidney, rat, role of glucocorticoids in the regulation of the biosynthesis and degradation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in, and liver in vivo (Gunn, J. M., Hanson, R. W., Meyuhas, O., Reshef, L. & Ballard, F.) 195-203

Kidney tubules, rat, sensitivity of the activity of adenylate cyclase in membranes from, to calcitonin (Loreau, N., Lepreux, C. & Ardaillou, R.) 305-314

Lactate, effect of 3-mercaptopicolinate on gluconeogenesis from, in isolated perfused rat liver (Goodman, M. N.) 137-139

Lactation, metabolic interactions of glucose, acetocacetate and insulin in rat mammary-gland slices during (Williamson, D. H., McKeown, S. R. & Ilic, V.) 145-152

Leaf cells, tobacco, plasmolysed, biosynthesis of pectin during the regeneration of the cell walls of (Boffey, S. A. & Northcote, D. H.) 433-440

Leucine, activity of liver ribosomes for the incorporation of, into protein in porphyric mice (Del Favero, A., Gamulin, S., Gray, C. H. & Norman, M. R.) 573-576

Leucine, effects of inhibitors on the incorporation of, into protein and on the amino acid pool in the blowfly Lucilia cuprina (Campbell, A. J. & Birt, L. M.) 227-234

Leucine, stimulation by glucose of the incorporation of, into protein in cultured rat heart-muscle cells (David, M. & Avi-Dor, Y.) 405-411

Lipogenesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour diurnal cycle (Hems, D. A., Rath, E. A. & Verrinder, T. R.) 167-173

Lipoproteins, very-low-density, effect of diet on the release of the triacylglycerol and protein components of, by perfused rat liver (Petersburg, S. J., Madeley, A. & Robinson, D. S.) 315-321

Liver cells, isolated, device for the rapid separation of, or similar tissue fragments for determination of the concentrations of cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47-50

Liver cells, rat, isolated, formation of aspartate from ammonium lactate by, in the presence of ethanol (Stubbs, M. & Krebs, H. A.) 41-45

Liver, mouse, activity of ribosomes in, of animals with porphyria (Del Favero, A., Gamulin, S., Gray, C. H. & Norman, M. R.) 573-576

Liver, mouse, biosynthesis of fatty acids in, and adipose tissue of normal and genetically obese (ob/ob) animals during the 24-hour diurnal cycle (Hems, D. A., Rath, E. A. & Verrinder, T. R.) 167-173

Liver, rabbit, analysis of the amino acids attached to transfer ribonucleic acid of, in vivo (Butler, M., Darbre, A. & Arnstein, H. R. V.) 419-432

Liver, rat, accumulation of aspartate in the presence of ethanol in (Stubbs, M. & Krebs, H. A.) 41-45

Liver, rat, characteristics of the deamination of aspartate by the purine nucleotide cycle in cytosol fraction of (Moss, K. M. & McGivan, J. D.) 275-283

Liver, rat, comparison of the regulation of the activity of pyruvate dehydrogenase in mitochondria from, and brain (Jope, R. & Blass, J. P.) 397-403

Liver, rat, conversion of thyroxine into tri-iodothyronine by homogenate of (Visser, J. T., van der Does-To6, I., Docter, R. & Hennemann, G.) 489-493

Liver, rat, determination of initial rates of pyruvate transport in mitochondria from, by an 'inhibitor-stop' technique (Titheradge, M. A. & Coore, H.G.) 553-556

Liver, rat, early enhancement by the administration of tri-iodothyronine of the activity of deoxyribonucleic acid-dependent ribonucleic acid polymerase II of (Jothy, S., Bilodeau, J.-L., Champsaur, H. & Simpkins, H.) 133-135

Liver, rat, effect of ethionine on the biosynthesis of ribonucleic acid in (Swann, P. F., Peacock, A. C. & Bunting, S.) 335-344

Liver, rat, effects of environmental low pressure on the activities of tyrosine aminotransferase and phenylalanine-4-hydroxylase in (Namboodiri, M. A. A. & Ramasarma, T.) 263-268

Liver, rat, effects of the administration of haematin and of 5-aminolaevulinate and comparison of the substrate and hormonal mechanisms for the regulation of the activity of tryptophan pyrrolase by its cofactor haem in (Badawy, A. A. & Evans, M.) 511-520

Liver, rat, foetal, biochemical changes in cultured explants of (MacDonnell, P. C., Ryder, E., Delvalle, J. A. & Greengard, O.) 269-273

Liver, rat, foetal, positive-feedback control of the maturation of the inner membrane of mitochondria from (Pollak, J. K.) 477-488

Liver, rat, perfused, biosynthesis of glycogen in, during streptozotocin-induced diabetes (Whitton, P. D. & Hems, D. A.) 153-165

1975
Liver, rat, perfused, effect of diet on the release of the triacylglycerol and protein components of very-low-density lipoproteins by (Petersburg, S. J., Madeley, A. & Robinson, D. S.) 315–321
Liver, rat, perfused, isolated, effects of 3-mercapto- picoline on gluconeogenesis and the concentrations of gluconeogenic metabolites in (Goodman, M. N.) 137–139
Liver, rat, perfused, isolated, mathematical modelling of the dynamics of the incorporation of radioactivity from [14C]Carbonate into urea and the guanine moiety of arginine residues of plasma albumin (Tavill, A. S., Nadkarni, D., Metcalfe, J., Black, E., Hoffenberg, R. & Carson, E. R.) 495–509
Liver, rat, ring- and N-hydroxylation of 2-acetamido- fluorene by a reconstituted cytochrome P-450 enzyme system from the microsomal fraction of (Lotlikar, P. D. & Zaleski, K.) 561–564
Liver, rat, role of glucocorticoids in the regulation of the biosynthesis and degradation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in, and kidney in vivo (Gunn, J. M., Hanson, R. W., Meyuhas, O., Reshef, L. & Ballard, F. J.) 195–203
Liver, rat, role of intermediates in the β-oxidation of fatty acids by mitochondria from (Stanley, K. K. & Tubbs, P. K.) 77–88
Liver, rat, stabilization by tetracycline of the activity of tyrosine aminotransferase of, in vitro and in vivo (Hannah, R. & Sahib, M. K.) 329–333
Liver, rat, stimulation by elevated plasma concentrations of insulin of the transport of calcium ions by mitochondria from (Dorman, D. M., Barratt, G. J. & Bygrave, F. L.) 389–395
Liver, rat, sulphation of p-hydroxyphenylpyruvate and related compounds by cytosol from (Hext, P. M. & Roe, F. A.) 175–181
Liver, Xenopus laevis, male, differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by oestradiol-17β of the biosynthesis of egg-yolk protein in (Tata, J. R. & Baker, B.) 345–355
Lucilia cuprina, see Blowfly
Lung fibroblasts, WI-38, human, cultured, biosynthesis of proline and hydroxyproline in (Shen, T.-F. & Strecker, H. J.) 453–461
Luteinizing hormone, see Luteotrophin
Lymphocytes, pig, stimulated, comparison of the effects of actinomycin D and of deprivation of zinc ions on the biosynthesis of ribonucleic acid by (Chesters, J. K.) 211–218

Lysoosphatidylethanolamine, intermolecular transacylation of phosphatidylethanolamine to form N-acylphosph- atidylethanolamine and, by a Butyrio sp. (Hazlewood, G. P. & Dawson, R. M. C.) 521–525
Lysosomes, liver, rat, inhibition by tetracycline of the degradation of tyrosine aminotransferase by (Hannah, R. & Sahib, M. K.) 329–333

Malate dehydrogenase, changes in the activities of, and other enzymes during culture of foetal rat liver explants (MacDonnell, P. C., Ryder, E., Delvalle, J. A. & Greengard, O.) 269–273
Mammary gland, rat, lactating, metabolic interactions of glucose, acetooacetate and insulin in slices of (Williamson, D. H., McKeeon, S. R. & Ilic, V.) 145–152
Mammary-gland tumours, rat, influence of anti-oestrogens on the specific binding in vitro of oestradiol by cytosol from human breast tumours and (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71–75
Membrane, inner, mitochondrial, liver, rat, foetal, positive-feedback control of the maturation of (Pollak, J. K.) 477–488
Membrane, plasma, Paracoccus denitrificans N.C.I.B. 8944, reversibility of the active transport of sulphate by membrane vesicles prepared from (Burnell, J. N., John, P. & Whatley, F. R.) 527–536
Membrane, plasma, tumour-KB-cell, human, iodination and fractionation of the glycoproteins of (Butters, T. D. & Hughes, R. C.) 59–69
3-Mercaptopicolinate, effects of, on gluconeogenesis and the concentrations of gluconeogenic metabolites in isolated perfused rat liver (Goodman, M. N.) 137–139
Methanol, autotrophic growth of Micrococcus denitrificans N.C.I.B. 8944 on (Cox, R. B. & Quayle, J. R.) 569–571
3-Methylcholanthrene, induction by, of the activities of glutathione S-transferases in rat kidney (Clifton, G., Kaplowitz, N., Wallin, J. D. & Kuhlenkamp, J.) 259–262
3-Methylcholanthrene, ring- and N-hydroxylation of 2-acetamidofluorene by a reconstituted cytochrome P-450 enzyme system from rat liver microsomal fraction after pretreatment of the animals with (Lotlikar, P. D. & Zaleski, K.) 561–564
Micrococcus denitrificans N.C.I.B. 8944, autotrophic growth of, on methanol (Cox, R. B. & Quayle, J. R.) 569–571
Micrococcus denitrificans, see also Paracoccus denitrificans
Microsomal fraction, liver, rat, ring- and N-hydroxylation of 2-acetamidofluorene by a reconstituted cytochrome P-450 enzyme system from (Lotlikar, P. D. & Zaleski, K.) 561–564
Microsomal fraction, properties of 5-aminoalavulinate synthetase and its relationship to the activity of mixed-function oxidases of, in the southern armyworm (Brattsten, L. B. & Wilkinson, C. F.) 97–104
Mitochondria, brain and liver, rat, comparison of the regulation of the activity of pyruvate dehydrogenase in (Jope, R. & Blass, J. P.) 397–403

Vol. 150

Mitochondria, liver, rat, determination of initial rates of pyruvate transport in, by an ‘inhibitor-stop’ technique (Titheradge, M. A. & Coore, H. G.) 553–556

Mitochondria, liver, rat, foetal, positive-feedback control of the maturation of the inner membrane of (Pollak, J. K.) 477–488

Mitochondria, liver, rat, localization of superoxide dismutase in, and cytosol (Peeters-Joris, C., Vandevenoerde, A.-M. & Baudhuin, P.) 31–39

Mitochondria, liver, rat, role of intermediates in the \(\beta \)-oxidation of fatty acids by (Stanley, K. K. & Tubbs, P. K.) 77–88

Mitochondria, liver, rat, stimulation by elevated concentrations of insulin of the transport of calcium ions by (Dorman, D. M., Barritt, G. J. & Bygrave, F. L.) 389–395

Mixed-function oxidases, see Oxidases, mixed-function

Müllerian duct, chick-embryo, isolation and characterization of an oestrogen receptor protein from (Teng, C. S. & Teng, C. T.) 183–190

Müllerian duct, chick-embryo, ontogeny of the cytoplasmic oestrogen receptor protein of (Teng, C. S. & Teng, C. T.) 191–194

Muscle cells, heart, rat, cultured, stimulation by glucose of the biosynthesis of protein in (David, M. & Avi-Dor, Y.) 405–411

Muscle, effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinase of nervous tissue and, from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 113–122

Muscle, skeletal, rat, rates of the biosynthesis and degradation of protein during growth of (Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnayelugo, D. O. & Waterlow, J. C.) 235–243

Nervous tissue, activities of enzymes associated with the tricarboxylic acid cycle in, from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 105–111

Nervous tissue, effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinase of muscle and, from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 113–122

Nicotiana tabacum, see Tobacco

Nicotinamide–adenine dinucleotide (phosphate), ability of adenosine triphosphate to drive the transport of amino acids but not the energy-dependent trans-hydrogenation of, in *Salmonella typhimurium* strain HfrA (Kay, W. W. & Bragg, P. D.) 21–29

Nicotinamide–adenine dinucleotide, reduced, regulation by adenine nucleotides, 2-oxoglutarate and, of the activity of citrate synthase in various methylothrophic bacteria (Colby, J. & Zatman, L. J.) 141–144

Nuclear ribonucleic acid, see Ribonucleic acid, nuclear

Oestradiol-17\(\beta \), differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by, of the biosynthesis of egg-yolk protein in male *Xenopus laevis* liver (Tata, J. R. & Baker, B.) 345–355

Oestradiol-17\(\beta \), influence of anti-oestrogens on the specific binding *in vitro* of, by cytosol from rat mammary-gland tumours and human breast tumours (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71–75

Oestradiol-17\(\beta \) receptor protein, cytoplasmic, ontogeny of, in chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 191–194

Oestradiol-17\(\beta \) receptor protein, isolation and characterization of, from chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 183–190

Oestrogen receptor protein, cytoplasmic, ontogeny of, in chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 191–194

Oestrogen receptor protein, isolation and characterization of, from chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 183–190

Ornithine decarboxylase, relationship between the activity of, and the incorporation of 2-deoxy-5-iodouridine in rat ventral and dorsolateral prostate glands (Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 557–559

Ovary, pig, biosynthesis of progesterone by corpus luteum tissue from, during superfusion (Watson, J. & Wrigglesworth, P. M.) 301–304

Oxidases, mixed-function, microsomal, properties of 5-aminoalaevulinate synthetase and its relationship to the activity of, in the southern armyworm (Brattsten, L. B. & Wilkinson, C. F.) 97–104

Oxidative phosphorylation, see Phosphorylation, oxidative

2,3-Oxidosqualene cyclase, activities of cycloartenol–S-adenosylmethionine methyltransferase and, in the cotyledon and axis tissues of germinating pea seedlings *in vivo* (Fang, T.-Y. & Baisted, D. J.) 323–328

2-Oxo acids, biosynthesis of amino acids via, in cultures of mixed rumen micro-organisms (Sauer, F. D., Erle, J. D. & Mahadevan, S.) 357–372

2-Oxoglutarate, regulation by reduced nicotinamide–adenine dinucleotide, adenine nucleotides and, of the activity of citrate synthase in various methylotrophic bacteria (Colby, J. & Zatman, L. J.) 141–144

\([^{18},^{18}]\text{O}_2\)Oxygen, use of, in a double-labelling study of the catabolism of haemoglobin to bilirubin in the rat (Brown, S. B. & King, R. F. G. J.) 565–567

Palmitate, role of intermediates in the \(\beta \)-oxidation of, and other fatty acids by rat liver mitochondria (Stanley, K. K. & Tubbs, P. K.) 77–88

Pancreas, rat, effects of calcium ionophores on the secretion of insulin and glucagon by islets of Langerhans isolated from (Ashby, J. P. & Speake, R. N.) 89–96

Paracoccus denitrificans N.C.I.B. 8944, reversibility of the active transport of sulphate by membrane vesicles prepared from the plasma membrane of (Burnell, J. N., John, P. & Whatley, F. R.) 527–536

Parathyroid hormone, sensitivity of the activity of adenylate cyclase in rat kidney-tubule membranes to calciotinin and (Loreau, N., Lepreux, C. & Ardaillou, R.) 305–314

Pea (*Pisum sativum*) seedlings, germinating, activities of 2,3-oxidosqualene cyclase and cycloartenol–S-adenosylmethionine methyltransferase in the cotyledon and axis tissues of, *in vivo* (Fang, T.-Y. & Baisted, D. J.) 323–328

1975
INDEX OF SUBJECTS

Pectin, biosynthesis of, during the regeneration of the cell walls of plasmolyzed tobacco-leaf cells (Boffey, S. A. & Northcote, D. H.) 433–440

pH gradient, evidence for, as the driving force for the active transport of sulphate by membrane vesicles prepared from the plasma membrane of Paracoccus denitrificans N.C.I.B. 8944 (Burnell, J. N., John, P. & Whatley, F. R.) 527–536

Phenobarbital, induction by, of the activities of glutathione S-transferases in rat kidney (Clifton, G., Kaplowitz, N., Wallin, J. D. & Kuhlenkamp, J.) 259–262

Phenylalanine 4-hydroxylase, inorganic carboxykinase
Phosphoenolpyruvate
Phosphofructokinase, Pisum sativum, Phosphoenolpyruvate see Phosphomonoesterase, oxidative, during
Plasma, albumin, in
Plasma membrane, see Membrane, plasma
Plasma, rat, stimulation by elevated concentrations of insulin in, of the transport of calcium ions by rat liver mitochondria (Dorman, D. M., Barratt, G. J. & Bygrave, F. L.) 389–395
Platelets, rat, specific binding sites for 5-hydroxytryptamine on (Drummond, A. H. & Gordon, J. L.) 129–132

Polyphosphoinositides, properties and subcellular localization of the phosphatases catalysing the hydrolysis of, in rat kidney (Cooper, P. H. & Hawthorne, J. N.) 537–551

Polysulphanes, role of, in the control of the activity of S-aminolaevulinate synthetase in Rhodopseudomonas spheroides N.C.I.B. 8253 (Sandy, J. D., Davies, R. C. & Neuberger, A.) 245–257

Potassium ions, device for the rapid separation of isolated hepatocytes or similar tissue fragments for determination of the concentrations of, and other cell constituents (Hems, R., Lund, P. & Krebs, H. A.) 47–50

Potassium ions, effects of ammonium ions, inorganic phosphate and, on the activity of phosphofructokinase of muscle and nervous tissue from various vertebrate and invertebrate species (Sugden, P. H. & Newsholme, E. A.) 113–122

Pressure, low, environmental effects of, on the activities of tyrosine aminotransferase and phenylalanine 4-hydroxylase in rat liver (Namboodiri, M. A. A. & Ramasarma, T.) 263–268

Prodenia eridania, see Southern armyworm

Progesterone, biosynthesis of, by pig corpus luteum tissue during superfusion (Watson, J. & Wrigglesworth, P. M.) 301–304

Prostate glands, ventral and dorsolateral, rat, relationship between the activity of ornithine decarboxylase and the incorporation of 2-deoxy-5-iodouridine in (Fuller, D. J. M., Donaldson, L. J. & Thomas, G. H.) 557–559

Protein, activity of liver ribosomes for the biosynthesis of, in porphyric mice (Del Favero, A., Gamulin, S., Gray, C. H. & Norman, M. R.) 573–576

Protein, analysis of the amino acids attached to rabbit liver transfer ribonucleic acid in vivo and its relevance to the biosynthesis of (Butler, M., Darbre, A. & Stein, R. V.) 419–432

Protein components, effect of diet on the release of the triacylglycerol components and, of very-low-density lipoproteins by perfused rat liver (Petersburg, S. J., Madeley, A. & Robinson, D. S.) 315–321

Protein, effects of inhibitors in vivo on the biosynthesis of, and on the amino acid pool in the blowfly Lucilia cuprina (Campbell, A. J. & Birt, L. M.) 227–234

Protein, effects of inhibitors of the biosynthesis of, on the production of testosterone by preparations of rat testis interstitial tissue and of Leydig cells (Cooke, B. A., Janszen, F. H. A., Clootscher, W. F. & van der Molen, H. J.) 413–418

Protein, egg-yolk, differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by oestradiol-17β of the biosynthesis of, in male Xenopus laevis liver (Tata, J. R. & Baker, B.) 345–355

Protein, oestrogen receptor, cytoplasmic, ontology of, in chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 191–194

Vol. 150
Protein, oestrogen receptor, isolation and characterization of, from chick-embryo Müllerian duct (Teng, C. S. & Teng, C. T.) 183–190

Protein, rates of the biosynthesis and degradation of, during the growth of rat skeletal muscle (Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C.) 235–243

Protein, stimulation by glucose of the biosynthesis of, in cultured rat heart-muscle cells (David, M. & Avi-Dor, Y.) 405–411

Proteins, ribosomal, activities of genes coding for ribosomal ribonucleic acid and, in Escherichia coli B/r (Bremer, H. & Dennis, P. P.) 469–475

Pseudomonas 3A2, regulation by reduced nicotinamide adenine dinucleotide, adenosine nucleotides and 2-oxoglutarate of the activity of citrate synthase in, and other methyloptrophs (Colby, J. & Zatman, L. J.) 141–144

Purine nucleotide cycle, characteristics of the deamination of aspartate by, in rat liver cytosol fraction (Moss, K. M. & McGivan, J. D.) 275–283

Pyruvate dehydrogenase, comparison of the regulation of the activity of, in mitochondria from rat brain and liver (Jope, R. & Blass, J. P.) 397–403

Pyruvate, determination of initial rates of transport of, in rat liver mitochondria by an ‘inhibitor-stop’ technique (Titheradge, M. M. & Coore, H. G.) 553–556

Respiration, betaine-induced stimulation of, at high osmolarities in a halotolerant bacterium (Shedy-Vinkler, C. & Avi-Dor, Y.) 219–226

Respiration, positive-feedback control of the development of, by rat liver mitochondria at parturition (Pollak, J. K.) 477–488

Retina, chick, uptake of glutamate by (Tunnicliff, G.) 297–299

Rhodopseudomonas spheroides N.C.I.B. 8253, role of trisulphides in the control of the activity of 5-aminolaevulinate synthetase in (Sandy, J. D., Davies, R. C. & Neuberger, A.) 245–257

Ribonucleic acid, comparison of the effects of actinomycin D and of deprivation of zinc ions on the biosynthesis of, by stimulated pig lymphocytes (Chesters, J. K.) 211–218

Ribonucleic acid, effect of ethionine on the biosynthesis of, in rat liver (Swann, P. F., Peacock, A. C. & Bunting, S.) 335–344

Ribonucleic acid, nuclear, heterogeneous, polyadenylate-rich, differential subnuclear distribution of, during induction by oestradiol-17β of the biosynthesis of egg-yolk protein in male Xenopus laevis liver (Tata, J. R. & Baker, B.) 345–355

Ribonucleic acid polymerase II, deoxyribonucleic acid-dependent, liver, rat, early enhancement by the administration of tri-iodothyronine of the activity of (Jothy, S., Bilodeau, J.-L., Champsaur, H. & Simpkins, H.) 133–135

Ribonucleic acid polymerase, free, regulatory state of the genes controlling the synthesis of ribosomes and physiological changes in the concentration of, in Escherichia coli B/r A.T.C.C. 12407 (Bremer, H. & Daldow, D. G.) 9–12

Ribonucleic acid, ribosomal, activities of genes coding for, and ribosomal proteins in Escherichia coli B/r (Bremer, H. & Dennis, P. P.) 469–475

Ribonucleic acid, ribosomal, effect of ethionine on the maturation of (Swann, P. F., Peacock, A. C. & Bunting, S.) 335–344

Ribonucleic acid, transfer, liver, rabbit, analysis of the amino acids attached to, in vivo (Butler, M., Darbre, A. & Arnstein, H. R. V.) 419–432

Ribosomal proteins, activities of genes coding for ribosomal ribonucleic acid and, in Escherichia coli B/r (Bremer, H. & Dennis, P. P.) 469–475

Ribosomal ribonucleic acid, see Ribonucleic acid, ribosomal

Ribosomes, regulatory state of the genes controlling the synthesis of, and physiological changes in the concentration of free ribonucleic acid polymerase in Escherichia coli B/r A.T.C.C. 12407 (Bremer, H. & Daldow, D. G.) 9–12

Ribosomes, relation between the rate of constitutive synthesis of, and the rate of biosynthesis of β-galactosidase in Escherichia coli B/r A.T.C.C. 12407 (Daldow, D. G. & Bremer, H.) 1–8

Ribulose diphosphate carboxylase, activity of, in Micrococcus dentriticus N.C.I.B. 8944 during autotrophic growth on methanol (Cox, R. B. & Quayle, J. R.) 569–571

Rumen micro-organisms, mixed, biosynthesis of amino acids in cultures of (Sauer, F. D., Erfle, J. D. & Mahadevan, S.) 357–372

Salmonella typhimurium strain HfrA, ability of adenosine triphosphate to drive the transport of amino acids but not the energy-dependent transhydrogenation of nicotinamide–adenine dinucleotide (phosphate) in (Kay, W. W. & Bragg, P. D.) 21–29

Seedlings, pea, germinating, activities of 2,3-oxidosqualene cyclase and cycloartenol→S-adenosylmethionine methyltransferase in the cotyledon and axis tissues of, in vivo (Fang, T.-Y. & Baisted, D. J.) 323–328

Serotonin, see 5-Hydroxytryptamine

Serum albumin, see Albumin, plasma

Skeletal muscle, see Muscle, skeletal

Southern armyworm (Spodoptera eridania), properties of S-aminolaevulinate synthetase and its relationship to the activity of microsomal mixed-function oxidases in (Bratsten, L. B. & Wilkinson, C. F.) 97–104

1975
INDEX OF SUBJECTS

Spodoptera eridania, see Southern armyworm
Starvation, biosynthesis of glycogen in perfused rat liver during streptozotocin-induced diabetes and (Whitton, P. D. & Hems, D. A.) 153–165
Steroid hormones, glucocorticoid, role of, in the regulation of the biosynthesis and degradation of phosphoenolpyruvate carboxykinase (guanosine tri-phosphate) in rat liver and kidney in vivo (Gunn, J. M., Hanson, R. W., Meyuhas, O., Reshef, L. & Ballard, F. J.) 195–203
Sterols, activities of 2,3-oxidosqualene cyclase and cycloc-artenol−S-adenosylmethionine methyltransferase involved in the biosynthesis of, in the cotededon and axis tissues of germinating pea seedlings in vivo (Fang, T.-Y. & Baisted, D. J.) 323–328
Streptozotocin-diabetes, see Diabetes, streptozotocin-
 Sulphate, inorganic, reversibility of the active transport of, by membrane vesicles prepared from the plasma membrane of Paracoccus denitrificans N.C.I.B. 8944 (Burnell, J. N., John, P. & Whatley, F. R.) 527–536
Supernatant fraction, see Cytosol
Superoxide dismutase, subcellular localization of, in rat liver (Peeters-Joris, C., Vandevoorde, A.-M. & Bauduin, P.) 31–39
Tetracycline, stabilization by, of the activity of rat liver tyrosine aminotransferase in vitro and in vivo (Hannah, R. & Sahib, M. K.) 329–333
Thiamin, conversion of threonine into other amino acids in rat brain during deficiency of (Gaitonde, M. K.) 285–295
Thiol groups, evidence for the involvement of, in the active transport of sulphate by membrane vesicles prepared from the plasma membrane of Paracoccus denitrificans N.C.I.B. 8944 (Burnell, J. N., John, P. & Whatley, F. R.) 527–536
Threonine, conversion of, into other amino acids in rat brain during deficiency of (Gaitonde, M. K.) 285–295
Thyroxine, conversion of, into tri-iodothyronine by rat liver homogenate (Visser, T. J., van der Does-Tobé, I., Docter, R. & Hennemann, G.) 489–493
Tobacco (Nicotiana tabacum)-leaf cells, plasmolysed, biosynthesis of pectin during the regeneration of the cell walls of (Boffey, S. A. & Northcote, D. H.) 433–440
Transfer ribonucleic acid, see Ribonucleic acid, transfer

Triacylglycerol components, effect of diet on the release of the protein components and, of very-low-density lipoproteins by perfused rat liver (Petersburg, S. J., Madeley, A. & Robinson, D. S.) 315–321
Triacylglycerol, effects of the vitamin A deficiency on, in vivo (Bilodeau, P. H. & Simpkins, A.) 537–551
Triiodothyronine, conversion of, by rat liver homogenate (Visser, T. J., van der Does-Tobé, I., Docter, R. & Hennemann, G.) 489–493
Triiodothyronine, early enhancement by the administration of, of the activity of deoxyribonucleic acid-dependent ribonucleic acid polymerase in rat liver (Jothy, S., Bilodeau, J.-L., Champsaun, H. & Simpkins, H.) 133–135
Triphosphoinositide phosphatase, kidney, rat, properties and subcellular localization of, and diphosphoinositide phosphatase (Cooper, P. H. & Hawthorne, J. N.) 537–551
Trisulphides, role of, in the control of the activity of 5-aminolaevulinate synthetase in Rhodopseudomonas spheroides N.C.I.B. 8253 (Sandy, J. D., Davies, R. C. & Neuberger, A.) 245–257
Tryptophan pyrrolase, effects of the administration of haematin and of 5-aminolaevulinate and comparison of the substrate and hormonal mechanisms for the regulation of the activity of, by its cofactor haem in rat liver (Badayw, A. A.-B. & Evans, M.) 511–520
Tumour KB cells, human, iodination and fractionation of the glycoproteins of the plasma membrane of (Butters, T. D. & Hughes, R. C.) 59–69
Tumours, breast, human, influence of anti-oestrogens on the specific binding in vitro of oestradiol by cytosol from (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71–75
Tumours, mammary-gland, rat, influence of anti-
oestrogens on the specific binding in vitro of oestradiol by cytosol from (Powell-Jones, W., Jenner, D. A., Blamey, R. W., Davies, P. & Griffiths, K.) 71–75
Tyrosine aminotransferase, effects of environmental low pressure on the activities of phenylalanine-4-hydroxylase and, in rat liver (Namboodiri, M. A. A. & Ramasarma, T.) 263–268
Tyrosine aminotransferase, liver, rat, stabilization by tetracycline of the activity of, in vitro and in vivo (Hannah, R. & Sahib, M. K.) 329–333

Urea, mathematical modelling of the dynamics of the incorporation of radioactivity from [14C]carbonate into, and the guanidine moiety of arginine residues of plasma albumin in isolated perfused rat liver (Tavill, A. S., Nadkarni, D., Metcalfe, J., Black, E., Hoffenberg, R. & Carson, E. R.) 495–509

Vol. 150
Uridine, regulation of the biosynthesis of ribosomal proteins in *Escherichia coli* A.T.C.C. 12632 during deprivation of (Beatty, B. G., Mak, W. W.-N. & Wong, J. T.-F.) 463–468

Vitamin B₁, see Thiamin

Vitellogenin, differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by oestradiol-17β of the biosynthesis of, in male *Xenopus laevis* liver (Tata, J. R. & Baker, B.) 345–355

Wall, cell, see Cell wall

Xenopus laevis, male, differential subnuclear distribution of polyadenylate-rich ribonucleic acid during induction by oestradiol-17β of the biosynthesis of egg-yolk protein in the liver of (Tata, J. R. & Baker, B.) 345–355

Zinc ions, comparison of the effects of actinomycin D and of deprivation of, on the biosynthesis of ribonucleic acid by stimulated pig lymphocytes (Chesters, J. K.) 211–218