EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairmen
H. B. F. Dixon
K. M. Jones
J. E. Cremer
N. M. Green*

Editorial Secretary
J. D. Killip

Assistant Editorial Secretary
E. N. Maltby

J. W. Bradbeer
H. G. Britton
R. B. Cain
M. Cannon
D. D. Davies
R. M. Denton
F. M. Dickinson
R. R. Dils
D. C. Ellwood
P. B. Garland
J. J. Holbrook
M. R. Hollaway
R. C. Hughes
J. D. Judah
A. E. Kellie
U. E. Loening

R. D. Marshall
P. A. Mayes
J. C. Metcalfe
R. E. Offord
D. V. Parke
R. N. Perham
C. I. Pogson
G. K. Radda
E. V. Rowsell
A. P. Ryle
S. P. Spragg*
D. R. Stanworth
I. O. Walker
D. H. Williamson

*Nominated by the British Biophysical Society

Overseas Advisory Panel

OFFICERS AND COMMITTEE, 1974–75

Chairman of the Committee
T. S. Work

Committee
B. A. Askonas, F.R.S.

Treasurer
D. F. Elliott

H. S. Bachelard

General Secretary
H. M. Keir

K. Burton, F.R.S.

Publications Secretary
R. M. C. Dawson

J. T. Dingle*

Meetings Secretary
J. B. Lloyd

C. A. Fewson

Assistant Meetings Secretary
H. F. Bradford

T. W. Goodwin, F.R.S.

C. H. S. Hitchcock

K. Griffiths

R. J. B. King

M. G. Harrington

*Ex officio Member of Committee; representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].
The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1975 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan.</td>
<td>145</td>
</tr>
<tr>
<td>1 Feb.</td>
<td>145</td>
</tr>
<tr>
<td>1 Mar.</td>
<td>145</td>
</tr>
<tr>
<td>1 Apr.</td>
<td>147</td>
</tr>
<tr>
<td>1 May</td>
<td>147</td>
</tr>
<tr>
<td>1 June</td>
<td>147</td>
</tr>
<tr>
<td>1 July</td>
<td>149</td>
</tr>
<tr>
<td>1 Aug.</td>
<td>149</td>
</tr>
<tr>
<td>1 Sept.</td>
<td>149</td>
</tr>
<tr>
<td>1 Oct.</td>
<td>151</td>
</tr>
<tr>
<td>1 Nov.</td>
<td>151</td>
</tr>
<tr>
<td>1 Dec.</td>
<td>151</td>
</tr>
</tbody>
</table>

* Completes volume, and includes Indexes.

Biochemical Society Transactions. This is now a separate publication (see below). Volume 3 will be published in 1975, in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription in 1975 is £105.00. Subject to exchange variation the rate for U.S.A., Canada and Mexico is $265.00 (despatch by air freight to these countries).

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £10 ($25.00). The joint subscription is £113.00 ($280.00 to addressees in U.S.A., Canada and Mexico; both publications despatched by air freight).

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkstone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society (Publications), P.O. Box 32, Commerce Way, Colchester CO2 8HP, Essex.

Microforms. The following versions are available.

(a) Microfilm (35 mm): Volumes 1–100.
(b) Microfiche (98-image): Volumes 101–144.

Details and prices are available on request from the Biochemical Society's Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.
Index of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberti, K. G. M. M.</td>
<td>353</td>
</tr>
<tr>
<td>Allan, D.</td>
<td>471</td>
</tr>
<tr>
<td>Badawy, A. A.-B.</td>
<td>425</td>
</tr>
<tr>
<td>Badenoch-Jones, P.</td>
<td>599</td>
</tr>
<tr>
<td>Barrett, M. C.</td>
<td>595</td>
</tr>
<tr>
<td>Barritt, G. J.</td>
<td>527</td>
</tr>
<tr>
<td>Beechey, R. B.</td>
<td>533</td>
</tr>
<tr>
<td>Blackshear, P. J.</td>
<td>353</td>
</tr>
<tr>
<td>Bowley, M.</td>
<td>461</td>
</tr>
<tr>
<td>Bradbeer, J. W.</td>
<td>433</td>
</tr>
<tr>
<td>Brindley, D. N.</td>
<td>461</td>
</tr>
<tr>
<td>Brooks, D. E.</td>
<td>439</td>
</tr>
<tr>
<td>Buse, M. G.</td>
<td>363</td>
</tr>
<tr>
<td>Buttery, P. J.</td>
<td>599</td>
</tr>
<tr>
<td>Bygrave, F. L.</td>
<td>527</td>
</tr>
<tr>
<td>Chavin, S. I.</td>
<td>417</td>
</tr>
<tr>
<td>Colby, J.</td>
<td>505, 513</td>
</tr>
<tr>
<td>Dawson, A. P.</td>
<td>595</td>
</tr>
<tr>
<td>Enser, M.</td>
<td>551</td>
</tr>
<tr>
<td>Evans, M.</td>
<td>425</td>
</tr>
<tr>
<td>Fayle, D. R. H.</td>
<td>527</td>
</tr>
<tr>
<td>Gregory, P.</td>
<td>433</td>
</tr>
<tr>
<td>Gregory, R. P. F.</td>
<td>487</td>
</tr>
<tr>
<td>Gullis, R. J.</td>
<td>557, 567</td>
</tr>
<tr>
<td>Hansford, R. G.</td>
<td>389</td>
</tr>
<tr>
<td>Harding, J. W., Jr.</td>
<td>545</td>
</tr>
<tr>
<td>Holliman, A.</td>
<td>417</td>
</tr>
<tr>
<td>Holloway, P. A. H.</td>
<td>353</td>
</tr>
<tr>
<td>Hubbard, S. A.</td>
<td>533</td>
</tr>
<tr>
<td>Hudson, A. M.</td>
<td>539</td>
</tr>
<tr>
<td>Ito, M.</td>
<td>499</td>
</tr>
<tr>
<td>Johnson, R. N.</td>
<td>389</td>
</tr>
<tr>
<td>Johnson, S. M.</td>
<td>417</td>
</tr>
<tr>
<td>Jones, L. M.</td>
<td>479</td>
</tr>
<tr>
<td>Jursinic, S.</td>
<td>363</td>
</tr>
<tr>
<td>Kleihues, P.</td>
<td>521</td>
</tr>
<tr>
<td>Langley, O. K.</td>
<td>375</td>
</tr>
<tr>
<td>Linnett, P. E.</td>
<td>533</td>
</tr>
<tr>
<td>Margison, G. P.</td>
<td>521</td>
</tr>
<tr>
<td>Mattioli, A.</td>
<td>447</td>
</tr>
<tr>
<td>McIntosh, J. E. A.</td>
<td>439</td>
</tr>
<tr>
<td>McMartin, C.</td>
<td>539</td>
</tr>
<tr>
<td>Michell, R. H.</td>
<td>471, 479</td>
</tr>
<tr>
<td>Mira, F.</td>
<td>453</td>
</tr>
<tr>
<td>Mitchell, A. D.</td>
<td>533</td>
</tr>
<tr>
<td>Montanaro, L.</td>
<td>447</td>
</tr>
<tr>
<td>Morris, H. P.</td>
<td>545</td>
</tr>
<tr>
<td>Munn, E. A.</td>
<td>533</td>
</tr>
<tr>
<td>Opie, L. H.</td>
<td>403</td>
</tr>
<tr>
<td>Osborne, D. J.</td>
<td>381</td>
</tr>
<tr>
<td>Owen, P.</td>
<td>403</td>
</tr>
<tr>
<td>Payne, P. I.</td>
<td>381</td>
</tr>
<tr>
<td>Pyeritz, E. A.</td>
<td>545</td>
</tr>
<tr>
<td>Reid, S. S.</td>
<td>363</td>
</tr>
<tr>
<td>Rowe, C. E.</td>
<td>557, 567</td>
</tr>
<tr>
<td>Schofield, J. G.</td>
<td>453</td>
</tr>
<tr>
<td>Sen, S.</td>
<td>381</td>
</tr>
<tr>
<td>Sheterline, P.</td>
<td>453</td>
</tr>
<tr>
<td>Sperti, S.</td>
<td>447</td>
</tr>
<tr>
<td>Suter, D.</td>
<td>583</td>
</tr>
<tr>
<td>Takeuchi, N.</td>
<td>499</td>
</tr>
<tr>
<td>Testoni, G.</td>
<td>447</td>
</tr>
<tr>
<td>Uchida, K.</td>
<td>499</td>
</tr>
<tr>
<td>Weidemann, M. J.</td>
<td>583</td>
</tr>
<tr>
<td>White, H. B., III</td>
<td>545</td>
</tr>
<tr>
<td>Yamamura, Y.</td>
<td>499</td>
</tr>
<tr>
<td>Zatman, L. J.</td>
<td>505, 513</td>
</tr>
</tbody>
</table>
NOTES FOR CONTRIBUTORS

It is the policy of the Biochemical Journal to publish papers in English in all fields of biochemistry, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary or inconclusive experiments should not generally be described.

Two types of paper are accepted by the editors.

Full-length papers. Papers submitted for publication should be sent, together with an extra copy of the synopsis, to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP. Typescripts should bear the name and address of the person to whom the proof of the paper is to be sent.

Papers submitted should be written concisely. Special attention is directed to the sections below concerning the preparation of the typescript. Typescripts that are not concise or do not conform to the conventions of the Biochemical Journal will be returned to the authors for revision. If a paper that has been returned to an author for revision is not resubmitted within one month, it will, on resubmission, be deemed a new paper and the date of receipt altered accordingly. A revised paper containing a significant amount of new material will also be redated.

Submission of a paper to the Editorial Board implies that it has been approved by all the named authors, that it reports unpublished work, that it is not under consideration for publication elsewhere, and that if accepted for the Biochemical Journal it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board.

Papers should be headed by a concise but informative full title, by the names of the authors (preferably with one forename in full for each author) and by the name and address of the establishment where the work was performed. Details of financial support appear in the acknowledgements at the end of the paper.

Before preparing papers authors should consult a current issue of the Journal to make themselves familiar with the general format, such as the use of cross-headings, lay-out of tables and citation of references. Papers should be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size and wide margins. The top copy should be submitted. It cannot be overemphasized that the need for revision of badly prepared typescripts inevitably leads to delays in publication.

Papers on specialized subjects should be presented so that they are intelligible to the ordinary reader of the Journal. Sufficient information must be included to permit repetition of the experimental work.

Short Communications. Typescripts should be submitted in duplicate, written in English, and conform strictly to the form of the Journal as far as spelling and abbreviations are concerned. Each Short Communication should be provided with a short synopsis (normally not exceeding 50 words). Such communications should not exceed 2400 words in length inclusive of the title, references etc. Authors may include up to two insertions such as tables, figures or schemes; in these cases authors must assess what proportion of a page these insertions will occupy and reduce the number of text words accordingly at the rate of 700 words per full page of the Journal. Authors are advised that the preparation of tables and especially figures is liable to cause a slight increase in publication time. Under no circumstances whatsoever can a complete Short Communication occupy more than four pages of the Journal. Papers should be complete in themselves; (1) the methods used in experimental work must be adequately described or sufficient reference given to allow repetition of the work; (2) sufficient indication of the results of experimental work must be included to justify the claims made. Communications should be addressed to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP.
INDEX OF AUTHORS

ALBERTI, K. G. M. see BLACKSHEAR, P. J. 353–362
ALLAN, D. & MICHELL, R. H. Enhanced synthesis de novo of phosphatidylcholine in lymphocytes treated with cationic amphipathic drugs 471–478
ANDERSSON, G. M. & VON DER DECKEN, A. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in rat liver after protein restriction 49–56
ASHCROFT, J. R. & HADDICK, B. A. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide 349–352
ASHWORTH, J. M. see EVERY, D. 161–167, 169–177

BADAWY, A. A.-B. & EVANS, M. The effects of acute and chronic nicotine hydrogen (+)-tartrate administration and subsequent withdrawal on rat liver tryptophan pyrrolase activity and their comparison with those of morphine, phenobarbitone and ethanol 425–432
BADENOCH-JONES, P. & BUTTERY, P. J. The effects of adenine nucleotides and guanine nucleotides on urate synthesis de novo isolated chick liver and kidney cells 599–601

BAKER, R. V. see VILHARDT, H. 57–65
BARLOW, S. D. & ORD, M. G. Thymidine transport in phytohaemagglutinin-stimulated pig lymphocytes 295–302
BARRETT, M. C. & DAWSON, A. P. Essentiality of ubiquinone for choline oxidation in rat liver mitochondria 595–597
BARRITT, G. J. see FAYLE, D. R. H. 527–531
BEECH, R. B., HUBBARD, S. A., LINNETT, P. E., MITCHELL, A. D. & MUNN, E. A. A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles 533–537
BERMAN, M. C., IVANITCH, K. M. & KENCH, J. E. The effects of halothane on hepatic microsomal electron transfer 179–186
BHALLA, A. K. see HARWOOD, R. 129–138
Blass, J. P. see GIBSON, G. E. 17–23
BOOTH, R. see GREGORY, K. W. 337–339
BORN, G. V. R. see SZABADOS, L. 335–336
BOWLEY, M. see BRINDLEY, D. N. 461–469
BRADBEER, J. W. see GREGORY, P. 433–438
BRANDT, K. D. see PALMOSKI, M. J. 145–147
BRENNAN, P. J. see HACKETT, J. A. 253–258
BRETT, C. T. & NORTHCOE, D. H. The formation of oligoglucans linked to lipid during synthesis of β-glucan by characterized membrane fractions isolated from peas 107–117
BRETT, M. J. see ROBINSON, H. C. 25–34

Vol. 148

BRINDLEY, D. N. & BOWLEY, M. Drugs affecting the synthesis of glycogen and phospholipids in rat liver. The effects of clofibrate, halofenate, fenfluramine, amphetamine, cinchocaine, chlorpromazine, demethyl-imipramine, mepyramine and some of their derivatives 461–469
BUSE, M. G., JURSINIC, S. & REID, S. S. Regulation of branched-chain amino acid oxidation in isolated muscles, nerves and aortas of rats 363–374
BUTTERY, P. J. see BADENOCH-JONES P. 599–601
BYGRAVE, F. L. see FAYLE, D. R. H. 527–531

CASEY, R. P. see BASHFORD, C. L. 153–155
CATER, B. R., TRIVEDI, P. & HALLINAN, T. Inhibition of glucose 6-phosphatase by pure and impure C-type phospholipases. Reactivation by phospholipid dispersions and protection by serum albumin 279–294

COLBY, J. & ZATMAN, L. J. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation in obligate methylotrophs and restricted facultative methylotrophs 513–520

COLBY, J. & ZATMAN, L. J. Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs 505–511
CULLINS, N. & MERRITT, M. J. The localization of glycocolate-pathway enzymes in Euglena 321–328
CURTIS, C. G. see POWELL, G. M. 303–307

DAVIES, D. D. see HUMPHREY, T. J. 119–127
DAWSON, A. P. see BARRETT, M. C. 595–597; GAINS, N. 157–160
DENTON, R. M. see HALESTRAP, A. P. 97–106
DILS, R. see SPEAKE, B. K. 309–320

ENSER, M. Desaturation of stearic acid by liver and adipose tissue from obese–hyperglycaemic mice (ob/ob) 551–555
EVANS, M. see BADAWY, A. A.-B. 425–432

EVANS, W. C. see RHO, E. M. 11–15; WILLIAMS, R. J. 1–10

EVERY, D. & ASHWORTH, J. M. Rates of degradation and synthesis of glycosidases de novo during growth and differentiation of Dictyostelium discoideum 161–167
EVERY, D. & ASHWORTH, J. M. Rates of accumulation of glycosidase activities during growth and differentiation of Dictyostelium discoideum 161–167

FAYLE, D. R. H., BARRITT, G. J. & BYGRAVE, F. L. The effect of butacaine on adenine nucleotide binding and translocation in rat liver mitochondria 527–531
FRIEDE, E. see JAMES, G. T. 341–343
FRITZ, P. J. see LIU, D. K. 67–76
INDEX OF AUTHORS

Gains, N. & Dawson, A. P. 8-Anilinonaphthalene-1-sulphonate interaction with whole and disrupted mitochondria: a re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for fluorescent probes binding to mitochondrial membranes 157-160

Gallagher, J. T. & Kent, P. W. Structure and metabolism of glycoproteins and glycosaminoglycans secreted by organ cultures of rabbit trachea 187-196

Garland, P. B. see Kemp, M. B. 329-333

Gibson, G. E., Jope, R. & Bliss, J. P. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces 17-23

Girard, J. R. & Guillet, I. Glucose turnover rate in newborn rats 345-347

Goldman, M. see Orlowksi, M. 259-268

Grant, M. E. see Harwood, R. 129-138

Green, I. C. see Montague, W. 237-243

Gregory, K. W. & Booth, R. Specificity of the effect of dietary cholesterol on rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity 337-339

Gregory, R. P. F. Evidence that circularly dichroic chlorophyll forms a-682 and a-710 are orientated at right angles to the thylakoid membranes of whole chloroplasts, and that the circular dichroism is light-dependent 487-497

Guillet, I. see Girard, J. R. 345-347

Gullis, R. J. & Rowe, C. E. The stimulation by synaptic transmitters of the incorporation of oleate into the phospholipid of synaptic membranes 557-565

Gullis, R. J. & Rowe, C. E. The stimulation by transmitter substances and putative transmitter substances of the net activity of phospholipase A2 of synaptic membranes of cortex of guinea-pig brain 197-208

Gullis, R. J. & Rowe, C. E. The stimulation of the phospholipase A2-acylating system of synaptic membranes of brain by cyclic nucleotides 567-581

Hackett, J. A. & Brennan, P. J. The mannophosphinositides of Corynebacterium aquaticum 253-258

Haddock, B. A. see Ashcroft, J. R. 349-352; Kemp, M. B. 329-333

Halestrap, A. P. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors 85-96

Halestrap, A. P. & Denton, R. M. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by a-cyano-4-hydroxycinnamate and related compounds 97-106

Hallinan, T. see Cater, B. R. 279-294

Hansford, R. G. & Johnson, R. N. The nature and control of the tricarboxylic cycle in beetle flight muscle 389-401

Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S. The synthesis and secretion of cartilage pro-collagen 129-138

Hauhart, R. E. see Thurston, J. H. 149-151

Hemming, F. W. see Palamarczyk, G. 245-251

Holliman, A. see Chavin, S. I. 417-423

Holloway, P. A. H. see Blackshear, J. P. 353-362

Hope, D. B. see Vilhardt, H. 57-65

Howell, S. L. see Montague, W. 237-243

Hubbard, S. A. see Beechey, R. B. 533-537

Hudson, A. M. & McMartin, C. An investigation of the involvement of adenosine 3':5'-cyclic monophosphate in steroidogenesis by using isolated adrenal cell column perfusion 539-544

Humphrey, T. J. & Davies, D. D. A new method for the measurement of protein turnover 119-127

Ito, M. see Takeuchi, N. 499-503

Ivanetich, K. M. see Berman, M. C. 179-186

Jackson, D. S. see Harwood, R. 129-138

James, G. T. & Frieden, E. Iron removal from transferrin by a cell-free amphibian system 341-343

Johnson, R. N. see Hansford, R. G. 389-401

Johnson, S. M. see Chavin, S. I. 417-423

Jones, E. M. see Thurston, J. H. 149-151

Jones, J. G. see Powell, G. M. 303-307

Jones, L. M. & Michell, R. H. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments 479-485

Jope, R. see Gibson, G. E. 17-23

Jungas, R. L. see Mukherjee, C. 229-235

Jurisinic, S. see Buse, M. G. 363-374

Kemp, M. B., Haddock, B. A. & Garland, P. B. Synthesis and sidedness of membrane-bound respiratory nitrate reductase (EC 1.7.99.4) in Escherichia coli lacking cytochromes 329-333

Kenchi, J. E. see Berman, M. C. 179-186

Kent, P. W. see Gallagher, J. T. 187-196

Kleiheues, P. see Margison, G. P. 521-525

Kuhn, N. J. & White, A. The topography of lactose synthesis 77-84

Langley, O. K. Sialic acid in crude myelin fractions from rat brain 375-380

Linnett, P. E. see Beechey, R. B. 533-537

Liu, D. K., Williams, G. H. & Fritz, P. J. Alkaline ribonuclease and ribonuclease inhibitor in mammmary gland during the lactation cycle and in the R3230AC mammary tumour 67-76

Lowther, D. A. see Robinson, H. C. 25-34

Margison, G. P. & Kleiheues, P. Chemical carcinogenesis in the nervous system. Preferential accumulation of O-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea 521-525

Marriott, K. M. & Northcote, D. H. The breakdown of lipid reserves in the endosperm of germinating castor beans 139-144

1975
INDEX OF AUTHORS

VON DER DECKEN, A. see ANDERSSON, G. M. 49–56

WEIDEMANN, M. J. see SUTER, D. 583–594

WHITE, A. see KUHN, N. J. 77–84

WHITE, H. B., III. see HARDING, J. W., Jr. 545–550

WILLIAMS, G. H. see LIU, D. K. 67–76

WILLIAMS, R. J. & EVANS, W. C. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway 1–10

YAMAMURA, Y. see TAKEUCHI, N. 499–503

ZATMAN, L. J. see COLBY, J. 505–511, 513–520
Acetamidoethyl 2-(p-chlorophenyl)-2-((azs trifluoro-m-toloyloxy)acetate (halofenate), effects of fenfluramine, 2-(p-chlorophenoxymethyl)butyrate and, and related compounds on the biosynthesis of glycerides and phospholipids in rat liver (Brindley, D. N. & Bowley, M.) 461-469

Acetate, effects of D-xylose, β-D-xylosides and β-D-galactosides on the incorporation of, into chondroitin sulphate in chick-embryo cartilage

Adenosine 3′:5′-cyclic monophosphate, investigation of the involvement of, in the stimulation by adrenocorticotropic of steroidogenesis by using column perfusion of isolated rat adrenal-gland cells (Hudson, A. M. & McMartin, C.) 539-544

Adenocarcinoma R3230AC, mammary-gland, rat, activities of alkaline ribonuclease and of ribonuclease inhibitor in rat mammary gland during the lactation cycle and in (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67-76

Acetylcholine, decreased biosynthesis of, accompanying impaired oxidation of pyruvate in rat brain minces (Gibson, G. E., Jope, R. & Blass, J. P.) 17-23

Acetylcholine, relationship of calcium ions to the effects of cinchocaine, adrenaline and, on the turnover of phosphatidylinositol in rat parotid-gland fragments (Jones, L. M. & Michell, R. H.) 479-485

Acetylcholine, stimulation by, and other neurotransmitter substances of the net activity of phospholipase A2 of synaptic membranes of guinea-pig cerebral cortex (Gullis, R. J. & Rowe, C. E.) 197-208

Acetylglucosamine, epimerization of the dolichol di-phosphate derivative of, to that of N-acetylmannosamine by pig liver microsomal fraction (Palamarczyk, G. & Hemming, F. W.) 245-251

Acetylglucosamine 1-phosphate, transfer of, to dolichol monophosphate by pig liver microsomal fraction (Palamarczyk, G. & Hemming, F. W.) 245-251

β-N-Acetylglucosaminidase, rates of accumulation of the activities of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161-167

β-N-Acetylglucosaminidase, rates of biosynthesis de novo and degradation of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 169-177

N-Acetylmannosamine, epimerization of the dolichol di-phosphate derivative of N-acetylglucosamine to that of, by pig liver microsomal fraction (Palamarczyk, G. & Hemming, F. W.) 245-251

N-Acetylenuraminic acid, accelerated uptake of 5-hydroxytryptamine by human platelets enriched in (Szabados, L., Mester, L., Michal, F. & Born, G. V. R.) 335-336

Adine nucleotides, effects of butacaene on the binding and translocation of, in rat liver mitochondria (Sayle, D. R. H., Barritt, G. J. & Bygrave, F. L.) 527-531

Acinetobacter anitratus N.C.I.B. 10487, aerobic metabolism of cyclohexanecarboxylate by (Rho, E. M. & Evans, W. C.) 11-15

Adipose tissue, epididymal, rat, role of pyruvate dehydrogenase phosphate phosphatase in the activation by insulin of pyruvate dehydrogenase in (Mukherjee, C. & Jungas, R. L.) 229-235

Adipose tissue, epididymal, rat, turnover of carnitine in, and other tissues (Brooks, D. E. & McIntosh, J. E. A.) 439-445

Adipose tissue, perigenital, mouse, obese—hyperglycaemic, desaturation of stearate by, and liver (Enser, M.) 551-555

Adrenocortical glands, rat, isolated, investigation of the involvement of adenosine 3′:5′-cyclic monophosphate in the stimulation by adrenocorticotropic of steroidogenesis by using column perfusion of (Hudson, A. M. & McMartin, C.) 539-544

Adrenal gland medulla, ox, effect of uncouplers of oxidative phosphorylation on the incorporation of catecholamines by vesicles of chromaffin granules from (Bashford, C. L., Casey, R. P., Radda, G. K. & Ritchie, G. A.) 153-155

Adrenaline, effect of uncouplers of oxidative phosphorylation on the incorporation of, by vesicles of ox adrenal-gland-medulla chromaffin granules (Bashford, C. L., Casey, R. P., Radda, G. K. & Ritchie, G. A.) 153-155
INDEX OF SUBJECTS

Adrenaline, failure of, to induce hyperglycaemia in young mice after the injection of fructose (Thurston, J. H., Jones, E. M. & Hauhart, R. E.) 149–151

Adrenaline, relationship of calcium ions to the effects of cinchocaine, acetycholine and, on the turnover of phosphatidylincholine in rat parotid-gland fragments (Jones, L. M. & Michell, R. H.) 479–485

Adrenocorticotropicin, investigation of the involvement of adenosine 3':5'-cyclic monophosphate in the stimulation by, of steroidogenesis by using column perfusion of isolated rat adrenal-gland cells (Hudson, A. M. & McMartin, C.) 539–544

Albumin, serum, ox, protection by, of rat liver microsomal glucose 6-phosphatase by pure and impure preparations of C-type phospholipases (Cater, B. R., Trivedi, P. & Hallinan, T.) 279–294

Alkaline ribonuclease, see Ribonuclease, alkaline

Amino acids, branched-chain, regulation of the oxidation of, in isolated rat diaphragm muscle, sciatic nerve and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374

Aminopiney demethylase, effects of single doses of methanol, ethanol or propan-2-ol on the activities of aniline hydroxylase and, in rat liver microsomal fraction (Powis, G.) 269–277

Amyloid fibrils, stimulation by, of the biosynthesis of glycosaminoglycans by human skin fibroblasts (Palmoski, M. J. & Brandt, K. D.) 145–147

Aniline hydroxylase, effects of single doses of methanol, ethanol or propan-2-ol on the activities of aminopiney demethylase and, in rat liver microsomal fraction (Powis, G.) 269–277

8-Anilinonaphthalene-1-sulphonate, interaction of, with whole and disrupted rat liver mitochondria and a re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for fluorescent probes binding to mitochondrial membranes (Gains, N. & Dawson, A. P.) 157–160

Aorta, rat, isolated, regulation of the oxidation of branched-chain amino acids in, diaphragm muscle and sciatic nerve (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374

Bacillus cereus T, inactivation of glucose 6-phosphate dehydrogenase during germination and outgrowth of endospores (Orlowski, M. & Goldman, M.) 259–268

Bacillus spp. PM6 and S2A1, activities of enzymes of the tricarboxylic acid cycle in the restricted facultative methyloptrophs bacterium spp. W6A and W3A1 and Bacillus spp. (Colby, J. & Zatman, L. J.) 505–511

Bacillus spp. PM6 and S2A1, enzymological aspects of the pathways for the oxidation of trimethylamine and the assimilation of C3 compounds in the obligate methyloptrophs bacterium spp. W6A and C2A1 and (Colby, J. & Zatman, L. J.) 513–520

Bacterium spp. 4B6 and C2A1, enzymological aspects of the pathways for the oxidation of trimethylamine and the assimilation of C3 compounds in the restricted facultative methyloptrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 and in the obligate methyloptrophs (Colby, J. & Zatman, L. J.) 513–520

Bacterium spp. W6A and W3A1, activities of enzymes of the tricarboxylic acid cycle in the restricted facultative methyloptrophs Bacillus spp. PM6 and S2A1 and (Colby, J. & Zatman, L. J.) 505–511

Bacterium spp. W6A and W3A1, enzymological aspects of the pathways for the oxidation of trimethylamine and the assimilation of C3 compounds in the obligate methyloptrophs bacterium spp. 4B6 and C2A1 and in the restricted facultative methyloptrophs Bacillus spp. PM6 and S2A1 and (Colby, J. & Zatman, L. J.) 513–520

Bean, castor (Ricinus communis), germinating, breakdown of lipid reserves in the endosperm of (Marriott, K. M. & Northcote, D. H.) 139–144

Bean (Phaseolus vulgaris) leaves, development of adenosine triphosphatase activity in plastids during greening of (Gregory, P. & Bradbeer, J. W.) 433–438

Beetle, Japanese (Popillia japonica), nature and control of the tricarboxylic acid cycle in flight muscle of (Hansford, R. G. & Johnson, R. N.) 389–401

Benzoate, evidence for a reductive pathway in the metabolism of, by Moraxella spp. N.C.I.B. 11086 through anaerobic nitrate respiration (Williams, R. J. & Evans, W. C.) 1–10

Blood platelets, see Platelets

Blood, rat, changes in the turnover rate of glucose in, immediately after birth (Girard, J. R. & Guillet, I.) 345–347

Brain cortex, guinea-pig, stimulation by neurotransmitter substances and putative neurotransmitter substances of the net activity of phospholipase A2 of the synaptic membranes of (Gullis, R. J. & Rowe, C. E.) 197–208

Brain, guinea-pig, stimulation by cyclic nucleotides of the phospholipase A2-fatty acid uptake system of synaptic membranes from (Gullis, R. J. & Rowe, C. E.) 567–581

Brain, guinea-pig, stimulation by synaptic transmitters of the incorporation of oleate into the phospholipids of synaptic membranes from (Gullis, R. J. & Rowe, C. E.) 557–565

Brain, rat, content of sialic acid in crude fractions of myelin from, and evidence that it is due to contamination by non-myelin membranes (Langley, O. K.) 375–380

Brain, rat, decreased biosynthesis of acetylcholine accompanying impaired oxidation of pyruvate in minces of (Gibson, G. E., Jope, R. & Blass, J. P.) 17–23

Brain, rat, preferential accumulation of 6-O-methylguanine residues in the deoxyribonucleic acid of, during repetitive administration of N-methyl-N-nitrosourea (Margison, G. P. & Kleihues, P.) 521–525

Brain, rat, turnover of carnitine in, and other tissues (Brooks, D. E. & Mcintosh, J. E. A.) 439–445

1975
INDEX OF SUBJECTS

1-Bromo-1-chloro-2,2,2-trifluoroethane (halothane), effects of, on microsomal electron transfer in rat liver (Berman, M. C., Ivanitch, K. M. & Kench, J. E.) 179–186

3-Bromopyruvate, inhibitory effects of, on the oxidation of pyruvate and the biosynthesis of acetylcholine in rat brain minces (Gibson, G. E., Jope, R. & Blass, J. P.) 17–22

Butacaine, effects of, on the binding and translocation of adenine nucleotides in rat liver mitochondria (Payle, D. R. H., Barritt, G. J. & Bygrace, F. L.) 527–531

γ-Butyrolactone, identification of, as a metabolite of salts of hexadecyl sulphate in the rat, the dog and the human (Merits, I.) 219–228

Calcium ions, relationship of, to the receptor-controlled stimulation of the turnover of phosphatidylinositol in rat parotid-gland fragments (Jones, L. M. & Michell, R. H.) 479–485

Carnitine, transport of, and other substrates by a mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control (Mowbray, J.) 41–47

Carnitine, turnover of, in rat tissues (Brooks, D. E. & McIntosh, J. E. A.) 439–445

Cartilage cells, chick-embryo, biosynthesis and secretion of procollagen by (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129–138

Castor bean, see Bean, castor

Catecholamines, effect of uncouplers of oxidative phosphorylation on the incorporation of, by vesicles of ox adrenal-gland-medulla chromaffin granules (Bashford, C. L., Casey, R. P., Radda, G. K. & Ritchie, G. A.) 153–155

Cells, adrenal-gland, rat, isolated, investigation of the involvement of adenine 3′:5′-cyclic monophosphate in the stimulation by adrenalectrostimulin of steroidogenesis by using column perfusion of (Hudson, A. M. & McMartin, C.) 539–544

Cells, kidney and liver, chick, effects of adenine mono-phosphate and guanosine monophosphate on the biosynthesis of urate de novo by (Badenoch-Jones, P. & Buttery, P. J.) 599–601

Cells, progenitor, granulopoietic, human, isolation from medium conditioned by human peripheral leucocytes and properties of factors stimulating the formation of granulocyte colonies by (Price, G. B., Senn, J. S., McCulloch, E. A. & Till, J. E.) 209–217

Cerebral cortex, guinea-pig, stimulation by neurotransmitter substances and putative neurotransmitter substances of the net activity of phospholipase A2 of the synaptic membranes of (Gullis, R. J. & Rowe, C. E.) 197–208

Chick, effects of adenine monophosphate and guanosine monophosphate on the biosynthesis of urate de novo by isolated liver and kidney cells from (Badenoch-Jones, P. & Buttery, P. J.) 599–601

Chick embryo, biosynthesis and secretion of procollagen by cartilage cells from (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129–138

Chick embryo, effects of n-xylene, β-d-xylolides and β-d-galactolides on the biosynthesis of chondroitin sulphate in cartilage from, in vitro (Robinson, H. C., Brett, M. J., Tralaggan, P. J., Lowther, D. A. & Okayama, M.) 25–34

Chloroform, use of, for the release of adenosine triphosphate from ox heart submitochondrial particles (Beechey, R. B., Hubbard, S. A., Linnett, P. E., Mitchell, A. D. & Munn, E. A.) 533–537

2-(p-Chlorophenoxo)isobutyrate, effects of fenfluramine, halofenate and, and related compounds on the biosynthesis of glycerides and phospholipids in rat liver (Brindley, D. N. & Bowley, M.) 461–469

Chlorophyll a, evidence that the circularly dichroic forms a-682 and a-710 of, are oriented at right-angles to the thylakoid membranes of whole pea-leaf chloroplasts and that the circular dichroism is light-dependent (Gregory, R. P. F.) 487–497

Chloroplasts, development of adenosine triphosphatase activity in etioplasts and, during greening of bean leaves (Gregory, P. & Bradbeer, J. W.) 433–438

Chloroplasts, pea-leaf, whole, evidence that the circularly dichroic forms a-682 and a-710 of chlorophyll a are oriented at right-angles to the thylakoid membranes of, and that the circular dichroism is light-dependent (Gregory, R. P. F.) 487–497

Chlorpromazine, enhanced biosynthesis de novo of phosphatidylinositol in pig mesenteric-lymph-node lymphocytes treated with, and other cationic amphiphilic drugs (Allan, D. & Michell, R. H.) 471–478

Cholesterol, dietary, specificity of the effect of, on the activity of rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Gregory, K. W. & Booth, R.) 337–339

Cholesterol, effect of feeding with, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35–39

Cholesterol, effects of modification of thyroid function on the biosynthesis and 7α-hydroxylation of, in rat liver (Tsuchi, H., Ito, M., Uchida, K. & Yamaumura, Y.) 499–503

Cholic acid, effect of feeding with, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35–39

Choline, essentiality of ubiquinone for the oxidation of, by rat liver mitochondria (Barrett, M. C. & Dawson, A. P.) 595–597

Chromaffin granules, adrenal-gland-medulla, ox, effect of uncouplers of oxidative phosphorylation on the incorporation of catecholamines by vesicles of (Bashford, C. L., Casey, R. P., Radda, G. K. & Ritchie, G. A.) 153–155

Cinchocaine, enhanced biosynthesis de novo of phosphatidylinositol in pig mesenteric-lymph-node lymphocytes treated with, and other cationic amphiphilic drugs (Allan, D. & Michell, R. H.) 471–478

Vol. 148
INDEX OF SUBJECTS

Cinchocaine, relationship of calcium ions to the effects of acetylcholine, adrenaline and, on the turnover of phosphatidylcholine in rat parotid-gland fragments (Jones, L. M. & Michell, R. H.) 479-485

Citic acid cycle, see Tricarboxylic acid cycle

Clofibrate [ethyl α-(p-chlorophenoxy)isobutylate], effect of the administration of, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35-39

Colchicine, binding of, to ox anterior-pituitary-gland slices and inhibition of the release of growth hormone (Sleterline, P., Schofield, J. G. & Mira, F.) 453-459

Colchicine, evidence that the interference by, with the release of insulin by rat and guinea-pig islets of Langerhans is due to inhibition of the polymerization of tubulin-like protein into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237-243

Corticotrphin, see Adrenocorticotrphin

Cortisol, effects of, and other hormones on the turnover of fatty acid synthetase in rabbit mammary gland in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309-320

Corynebacterium aquaticum, metabolism and function of the mannophosphoinositides of (Hackett, J. A. & Brennan, P. J.) 253-258

Cyanide, potassium, biosynthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of (Ashcroft, J. R. & Haddock, B. A.) 349-352

α-Cyano-4-hydroxycinnamate, specificity and metabolic implications of the inhibition by, and related compounds of pyruvate transport in isolated mitochondria from various tissues and in intact tissue preparations (Halestrap, A. P. & Denton, R. M.) 97-106

Cyclic adenosine 3′:5′-monophosphate, see Adenosine 3′:5′-cyclic monophosphate

Cyclic nucleotides, see Nucleotides, cyclic

Cyclohexanecarboxylate, aerobic metabolism of, by Acinetobacter anitratum N.C.I.B. 10487 (Rho, E. M. & Evans, W. C.) 11-15

Cyclohexanecarboxylate, identification of, as an intermediate in the metabolism of benzoate by Moraxella sp. N.C.I.B. 11086 through anaerobic nitrate respiration (Williams, R. J. & Evans, W. C.) 1-10

Cyclohex-1-ene-1-carboxylate, identification of, as an intermediate in the aerobic metabolism of cyclohexanecarboxylate by Acinetobacter anitratum N.C.I.B. 10487 (Rho, E. M. & Evans, W. C.) 11-15

Cytochrome bs, microsomal, liver, rat, effects of halothane on electron transfer by (Berman, M. C., Ivanetch, K. M. & Kench, J. E.) 179-186

Cytochromes, biosynthesis and sidedness of membrane-bound nitrate reductase in an Escherichia coli mutant lacking (Kemp, M. B., Haddock, B. A. & Garland, P. B.) 329-333

Deoxyribonucleic acid, brain, rat, preferential accumulation of 6-O-methylguanine residues in, during repetitive administration of N-methyl-N-nitrosourea (Margison, G. P. & Kleihues, P.) 521-525

Development, immediately postnatal, changes in the turnover rate of glucose in the rat during (Girard, J. E. & Guillet, I.) 345-347

Diabetes, streptozotocin-, effects of inhibition of gluconeogenesis on ketogenesis in rats with (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 353-362

Diaphragm muscle, rat, isolated, regulation of the oxidation of branched-chain amino acids in, sciatic nerve and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363-374

Dictyosome stacks, intact, formation of oligoglycans linked to lipid during the biosynthesis of β-glucan by pea root membrane fractions rich in (Brett, C. T. & Northcote, D. H.) 107-117

Dictyostelium discoideum, rates of accumulation of the activities of glycosidases during growth and differentiation of (Every, D. & Ashworth, J. M.) 161-167

Dictyostelium discoideum, rates of biosynthesis de novo and degradation of glycosidases during growth and differentiation of (Every, D. & Ashworth, J. M.) 169-177

Diet, effect of, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35-39

Diet, protein-restricted, effect of feeding with, on the activity of deoxyribonucleic acid-dependent ribonucleic acid polymerase in rat liver (Andersson, G. M. & von der Decken, A.) 49-56

Dolichol diphasphate, formation of mono-N-acetylhexosamine derivatives of, by pig liver microsomal fraction (Palamarczyk, G. & Hemming, F. W.) 245-251

Duckweed (Lemma minor), method for the measurement of protein turnover in (Humphrey, T. J. & Davies, D. D.) 119-127

Electron transfer, microsomal, liver, rat, effects of halothane on (Berman, M. C., Ivanetch, K. M. & Kench, J. E.) 179-186

Embryos, rye, early biosynthesis of ribonucleic acid during the germination of, and its relationship to the early biosynthesis of protein (Sen, S., Payne, P. I. & Osborne, D. J.) 381-387

Endoplasmic reticulum, see Reticulum, endoplasmic

Endosperm, castor-bean, breakdown of lipid reserves in, during germination (Marriott, K. M. & Northcote, D. H.) 139-144

Endospores, Bacillus cereus T, inactivation of glucose 6-phosphate dehydrogenase during germination and outgrowth of (Orloski, M. & Goldman, M.) 259-268

Epiddimidys, rat, role of pyruvate dehydrogenase phosphate phosphatase in the activation by insulin of pyruvate dehydrogenase in adipose tissue of (Mukherjee, C. & Jungas, R. L.) 229-235

Epiddimidys, rat, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of pyruvate transport in fat-pads from, and in other tissues (Halestrap, A. P. & Denton, R. M.) 97-106

Epiddimidys, rat, turnover of carnitine in adipose tissue of, and in other tissues (Brooks, D. E. & McIntosh, J. E. A.) 439-445

Epinephrine, see Adrenaline

Erythrocytes, immature, frog, removal of iron from transferrin by a cell-free system prepared from (James, G. T. & Frieden, E.) 341-343

1975
Escherichia coli, biosynthesis and sidedness of membrane-bound nitrate reductase in a mutant of, lacking cytochromes (Kemp, M. B., Haddock, B. A. & Garland, P. B.) 329–333

Escherichia coli, biosynthesis of alternative membrane-bound redox carriers during aerobic growth of, in the presence of potassium cyanide (Ashcroft, J. R. & Haddock, B. A.) 349–352

Ethanol, comparison of the effects of acute and chronic administration of nicotine hydrogen (+)-tartrate on the activity of tryptophan pyrrolase in rat liver with those of morphine, phenobarbitone and (Badawy, A. A.-B. & Evans, M.) 425–432

Ethanol, effects of single doses of methanol, propan-2-ol, or, on the metabolism of foreign compounds by rat liver microsomal fraction (Powis, G.) 269–277

2-Ethylamino-1-(m-trifluoromethylphenyl)propane hydrochloride (fenfluramine), effects of acetamidoethyl 2-(p-chlorophenyl)-2-(aax-trifluoro-m-tolloyloxy)acetate (halofenate), 2-(p-chlorophenoxy)isobutyrate and, and related compounds on the biosynthesis of glycerides and phospholipids in rat liver (Brindley, D. N. & Bowley, M.) 461–469

Ethyl α-(p-chlorophenoxy)isobutyrate (clofibrate), effect of the administration of, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35–39

Etioplasts, development of adenosine triphosphatase activity in chloroplasts and, during greening of bean leaves (Gregory, P. & Bradbeer, J. W.) 433–438

Euglena gracilis, subcellular localization of enzymes of the glycollate pathway in (Collins, N. & Merrett, M. J.) 321–328

Fat-cells, epididymal, rat, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of pyruvate transport in mitochondria isolated from, and other tissues (Halestrap, A. P. & Denton, R. M.) 97–106

Fatty acid synthetase, effects of hormones on the turnover of, in rabbit mammary gland in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309–320

Fatty acids, stimulation by cyclic nucleotides of the activity of phospholipase A2 and of the incorporation of, into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 567–581

Fenfluramine [2-ethylamino-1-(m-trifluoromethylphenyl)-propane hydrochloride], effects of halofenate, 2-(p-chlorophenoxy)isobutyrate and, and related compounds on the biosynthesis of glycerides and phospholipids in rat liver (Brindley, D. N. & Bowley, M.) 461–469

Fibroblasts, skin, human, stimulation by amyloid fibrils of the biosynthesis of glycosaminoglycans by (Palmski, M. J. & Brandt, K. D.) 145–147

Flight muscle, see Muscle, flight

Formaldehyde, enzymological aspects of the pathways for the oxidation of trimethylamine and the assimilation of, in the obligate methylotrophs bacterium spp. 4B6 and C2A1 and in the restricted facultative methylotrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 (Colby, J. & Zatman, L. J.) 513–520

Frog (Rana catesbeiana), removal of iron from transferrin by a cell-free system prepared from immature erythrocytes from (James, G. T. & Frieden, E.) 341–343

Fructose, failure of adrenaline to induce hyperglycaemia in young mice after the injection of (Thurston, J. H., Jones, E. M. & Hauhart, R. E.) 149–151

β-Galactosidase, rates of accumulation of the activities of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161–167

Germination, breakdown of lipid reserves in castor-bean endosperm during (Marriott, K. M. & Northcote, D. H.) 139–144

Germination, early biosynthesis of ribonucleic acid during, of rye embryos and its relationship to the early biosynthesis of protein (Sen, S., Payne, P. I. & Osborne, D. J.) 381–387

Germination, inactivation of glucose 6-phosphate dehydrogenase during, and outgrowth of Bacillus cereus T endospores (Orlowski, M. & Goldman, M.) 259–268

Gibberellic acid, effect of, on the breakdown of lipid reserves in castor-bean endosperm during germination (Marriott, K. M. & Northcote, D. H.) 139–144

β-Glucan, formation of oligoglycans linked to lipid during the biosynthesis of, by membrane fractions isolated from pea roots (Brett, C. T. & Northcote, D. H.) 107–117

Gluconeogenesis, correlation between the activities of glycerol kinase and glycerol 3-phosphate dehydrogenase in rat hepatomas and normal rat liver and its relevance to, from glycerol (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Glucose, changes in the turnover rate of, in the newborn rat immediately after birth (Girard, J. R. & Guillet, J.) 345–347

Glucose, correlation between the activities of glycerol kinase and glycerol 3-phosphate dehydrogenase in rat hepatomas and normal rat liver and its relevance to, from glycerol (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Glucose, effects of modification of thyroid function on the induction by administration of, of the biosynthesis and 7α-hydroxylation of cholesterol in rat liver (Takeuchi, N., Ito, M., Uchida, K. & Yamamura, Y.) 499–503

Glucose, failure of adrenaline to increase the concentration of, in plasma in young mice after the injection of fructose (Thurston, J. H., Jones, E. M. & Hauhart, R. E.) 149–151

Vol. 148
Glucose 6-phosphatase, microsomal, liver, rat, reactivation by dispersions of phospholipids of, after inhibition by pure and impure preparations of C-type phospholipases and protection by ox serum albumin against the inhibition (Cater, B. R., Trivedi, P. & Hallinan, T.) 279–294

Glucose 6-phosphate dehydrogenase, inactivation of, during germination and outgrowth of Bacillus cereus T endospores (Orlowski, M. & Goldman, M.) 259–268

Glucose, quantitative aspects of the oxidation of, by rat spleen slices (Suter, D. & Weidemann, M. J.) 583–594

α-Glucosidase, rates of accumulation of the activities of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161–167

α-Glucosidase, rates of biosynthesis de novo and degradation of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 169–177

β-Glucosidase, rates of accumulation of the activities of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161–167

Glutamate dehydrogenase, role of, in the control of the oxidation of proline via the tricarboxylic acid cycle in Japanese-beetle flight-muscle mitochondria (Hansford, R. G. & Johnson, R. N.) 389–401

Glycerides, effects of fenfluramine, halofenate and 2-(p-chlorophenoxy)isobutyrate and related compounds on the biosynthesis of phospholipids and, in rat liver (Brindley, D. N. & Bowley, M.) 461–469

Glycerol kinase, correlation between the activities of glycerol 3-phosphate dehydrogenase and, in rat hepatomas and normal rat liver (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Glycerol 3-phosphate dehydrogenase, correlation between the activities of glycerol kinase and, in rat hepatomas and normal rat liver (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Glycine, effects of adenosine monophosphate and guanosine monophosphate on the biosynthesis of urate from, by isolated chick liver and kidney cells (Badenoch-Jones, P. & Butterly, P. J.) 599–601

Glycolipids, formation of, during the biosynthesis of β-glucan by membrane fractions isolated from pea roots (Brett, C. T. & Northcote, D. H.) 107–117

Glycolate pathway, subcellular localization of enzymes of, in Euglena gracilis (Collins, N. & Merrett, M. J.) 321–328

Glycolic acid sulphate ester, identification of, as a metabolite of salts of hexadecyl sulphate in the dog (Merits, I.) 219–228

Glycoproteins, structure and metabolism of glycosaminoglycans and, secreted by organ cultures of rabbit trachea (Gallagher, J. T. & Kent, P. W.) 187–196

Glycosaminoglycans, stimulation by amyloid fibrils of the biosynthesis of, by human skin fibroblasts (Palmoski, M. J. & Brandt, K. D.) 145–147

Glycosaminoglycans, structure and metabolism of glycoproteins and, secreted by organ cultures of rabbit trachea (Gallagher, J. T. & Kent, P. W.) 187–196

Glycosidases, rates of accumulation of the activities of, during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161–167

Glycosidases, rates of biosynthesis de novo and degradation of, during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161–167

Golgi apparatus, mammary-gland, rat, topography of the biosynthesis of lactose by vesicles derived from (Kuhn, N. J. & White, A.) 77–84

Granulocyte colonies, isolation from medium conditioned by human peripheral leucocytes and properties of factors stimulating the formation of, by human granulopoietic progenitor cells (Price, G. B., Senn, J. S., McCulloch, E. A. & Till, J. E.) 209–217

Granulopoietic progenitor cells, human, isolation from medium conditioned by human peripheral leucocytes and properties of factors stimulating the formation of granulocyte colonies by (Price, G. B., Senn, J. S., McCulloch, E. A. & Till, J. E.) 209–217

Growth cycle, changes in the composition of the mannophosphoinositides during, of Corynebacterium aquaticum (Hackett, J. A. & Brennan, P. J.) 253–258

Growth hormone, binding of colchicine to ox anterior-pituitary-gland slices and inhibition of the release of (Sheetline, P., Schofield, J. G. & Mira, F.) 453–459

Guanine residues, 6-O-methylated, preferential accumulation of, in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea (Margison, G. P. & Kleihues, P.) 521–525

Guanosine monophosphate, effects of adenosine monophosphate and, on the biosynthesis of urate de novo by isolated chick liver and kidney cells (Badenoch-Jones, P. & Butterly, P. J.) 599–601

Guanosine triphosphatases, elongation factor 1-dependent and elongation factor 2-dependent, inhibition by ricin of the activities of, of rat liver ribosomes (Sperti, S., Montanaro, L., Mattioli, A. & Testoni, G.) 447–451

Halofenate [acetamidoethyl 2-(p-chlorophenyl)-2-(axatrifluoro-m-tolyloxy)acetate], effects of fenfluramine, 2-(p-chlorophenoxy)isobutyrate and, and related compounds on the biosynthesis of glycerides and phospholipids in rat liver (Brindley, D. N. & Bowley, M.) 461–469

Halothane (1-bromo-1-chloro-2,2,2-trifluoroethane), effects of, on microsomal electron transfer in rat liver (Berman, M. C., Ivanetich, K. M. & Kench, J. E.) 179–186

Heart, ox, simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles from (Beechey, R. B., Hubbard, S. A., Linnett, P. E., Mitchell, A. D. & Munn, E. A.) 533–537

Heart, rat, kinetics and specificity towards substrates and inhibitors of the mitochondrial pyruvate carrier of, and liver (Halestrap, A. P.) 85–96

Heart, rat, perfused, isolated, role of changes in the mitochondrial oxidized/reduced concentration ratio of free nicotinamide-adenine dinucleotide and concentration of oxaloacetate in the effects of increased mechanical work by, during the production or uptake of ketone bodies (Ojie, L. H. & Owen, P.) 403–415

INDEX OF SUBJECTS
Heart, rat, properties of a mitochondrial monocarboxylic acid transporter in, and liver and its possible function in cell control (Mowbray, J.) 41–47

Heart, rat, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of pyruvate transport in mitochondria isolated from, and other tissues (Halestrap, A. P. & Denton, R. M.) 97–106

Heart, rat, turnover of carnitine in, and other tissues (Brooks, D. E. & McIntosh, J. E. A.) 439–445

Hepatomas, rat, correlation between the activities of glycerol kinase and glycerol 3-phosphate dehydrogenase in, and normal rat liver (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Hexadecyl sulphate, metabolism of salts of, in the rat, the dog and the human (Merits, I.) 219–228

Hormones, effects of, on the turnover of fatty acid synthetase in rabbit mammary gland in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309–320

Hydrocortisone, see Cortisol

Hydrogen ions, association of a flux of, with pyruvate transport by rat liver and heart mitochondria (Halestrap, A. P.) 85–96

Hydrogen isotope (H2) use of a short exposure to growth medium containing water labelled with, in a method for the measurement of protein turnover in plants as exemplified by duckweed (Lemma minor) (Humphrey, T. J. & Davies, D. D.) 119–127

p-Hydroxybenzaldehyde, regulation of the incorporation of, into ubiquinone in the rat (Ranganathan, S. & Ramasarima, T.) 35–39

3-Hydroxybutyric acid, role of changes in the mitochondrial oxidized/reduced concentration ratio of free nicotinamide adenine dinucleotide and concentration of oxaloacetate in the effects of increased mechanical work by isolated perfused rat heart during the production or uptake of acetocetate and (Opie, L. H. & Owen, P.) 403–415

4-Hydroxybutyric acid sulphate ester, identification of, as a metabolite of salts of hexadecyl sulphate in the rat, the dog and the human (Merits, I.) 219–228

2-Hydroxycyclohexanecarboxylate, identification of, as an intermediate in the aerobic metabolism of cyclohexanecarboxylate by Acinetobacter anitratum N.C.I.B. 10487 (Rho, E. M., & Evans, W. C.) 11–15

2-Hydroxycyclohexanecarboxylate, identification of, as an intermediate in the metabolism of benzoyl by Moraxella sp. N.C.I.B. 11086 through anaerobic nitrate respiration (Williams, R. J. & Evans, W. C.) 1–10

3-Hydroxy-3-methylglutaryl-coenzyme A reductase, microsomal, liver, rat, specificity of the effect of dietary cholesterol on the activity of (Gregory, K. W. & Booth, R.) 337–339

11-Hydroxy steroids, investigation of the involvement of adenosine 3':5'-cyclic monophosphate in the stimulation by adrenocorticotrophin of the biosynthesis of, by using column perfusion of isolated rat adrenal-gland cells (Hudson, A. M. & McMartin, C.) 539–544

5-Hydroxytryptamine, accelerated uptake of, by human platelets enriched in slialic acid (Szabados, L., Mester, L., Michal, F. & Born, G. V. R.) 335–336

Hyperglycaemia, failure of adrenaline to induce, in young mice after the injection of fructose (Thurston, J. H., Jones, E. M. & Haurhart, R. E.) 149–151

Hypophysis, see Neurohypophysis

Immunoglobulins, association of, and other polypeptides with the plasma membrane of pig aortic lymph-node lymphocytes (Chavin, S. I., Johnson, S. M. & Holliman, A.) 417–423

Insulin, effects of, and other hormones on the turnover of fatty acid synthetase in rabbit mammary gland in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309–320

Insulin, evidence that the interference by colchicine with the release of, by rat and guinea-pig islets of Langerhans is due to inhibition of the polymerization of tubulin-like protein into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237–243

Insulin, role of pyruvate dehydrogenase phosphate phosphatase in the activation by, of pyruvate dehydrogenase in rat epididymal adipose tissue (Mukherjee, C. & Jungas, R. L.) 229–235

Iron, removal of, from transferrin by a cell-free system prepared from frog immature erythrocytes (James, G. T. & Frieden, E.) 341–343

Islets of Langerhans, pancreas, rat and guinea-pig, evidence that the interference by colchicine with the release of insulin by, is due to inhibition of the polymerization of tubulin-like protein into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237–243

Isocitrate, regulation of the oxidation of isocitrate, valine and, in isolated rat diaphragm muscle, sciatic nerve and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374

Japanese beetle (Popillia japonica), nature and control of the tricarboxylic acid cycle in flight muscle of (Hansford, R. G. & Johnson, R. N.) 389–401

Ketone bodies, effects of inhibition of gluconeogenesis on the formation of, in starved and streptozotocin-diabetic rats (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M.) 353–362

Ketone bodies, role of changes in the mitochondrial oxidized/reduced concentration ratio of free nicotinamide adenine dinucleotide and concentration of oxaloacetate in the effects of increased mechanical work by isolated perfused rat heart during the production or uptake of acetoacetate and (Opie, L. H. & Owen, P.) 403–415

Kidney cells, chick, isolated, effects of adenosine monophosphate and guanosine monophosphate on the biosynthesis of urate de novo by, and liver cells (Badenoch-Jones, P. & Buttery, P. J.) 599–601

Kidney cortex, rat, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of pyruvate transport in slices of, and in other tissues (Halestrap, A. P. & Denton, R. M.) 97–106

Kidney, rat, turnover of carnitine in, and other tissues (Brooks, D. E. & McIntosh, J. E. A.) 439–445

Lactate, production of, during the metabolism of glucose in rat spleen slices (Suter, D. & Weidemann, M. J.) 583–594
Lactation cycle, activities of alkaline ribonuclease and of ribonuclease in rat mammary gland during, and in rat mammary-gland adenocarcinoma R3230AC (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67–76

Lactose, topography of the minor, see bean, Leucine, Leucocytes, Light, formation Lipid-reserves, effects mouse, Liver, pig, formation of mono-N-acetylhexosamine derivatives of dolichol diphasate by microsomal fraction of (Palamarczyk, G. & Hemming, F. W.) 245–251

Liver, rat, correlation between the activities of glycerol kinase and glycerol 3-phosphate dehydrogenase in, and rat hepatomas (Harding, J. W., Jr., Pyeritz, E. A., Morris, H. P. & White, H. B., III) 545–550

Liver, rat, effect of feeding with a protein-restricted diet on the activity of deoxyribonucleic acid-dependent ribonucleic acid polymerase in (Andersson, G. M. & von der Decken, A.) 49–56

Liver, rat, effects of acute and chronic administration of nicotine hydrogen (-)-tartrate on the activity of tryptophan pyrrolase in, and their comparison with those of morphine, phenobarbitone and ethanol (Badawy, A. A.-B. & Evans, M.) 425–432

Liver, rat, effects of butacaine on the binding and translocation of adenine nucleotides in mitochondria from (Payle, D. R. H., Barratt, G. J. & Bygrave, F. L.) 527–531

Liver, rat, effects of fenfluramine, halofenate and 2-(p-chlorophenoxy)isobutyrate and related compounds on the biosynthesis of glyceraldehydes and phospholipids in (Brindley, D. N. & Bowley, M.) 461–469

Liver, rat, effects of halothane on microsomal electron transfer in (Berman, M. C., Ivanetch, K. M. & Kench, J. E.) 179–186

Liver, rat, effects of modification of thyroid function on the biosynthesis and 7a-hydroxylation of cholesterol in (Takeuchi, N., Ito, M., Uchida, K. & Yamamura, Y.) 499–503

Liver, rat, effects of single doses of methanol, ethanol or propan-2-ol on the metabolism of foreign compounds by the microsomal fraction of (Powis, G.) 269–277

Liver, rat, essentiality of ubiquinone for the oxidation of choline by mitochondria from (Barrett, M. C. & Dawson, A. P.) 595–597

Liver, rat, inhibition by ricin of the activities of elongation factor 1-dependent and elongation factor 2-dependent guanosine triphosphatases of ribosomes from (Sperli, S., Montanaro, L., Mattioli, A. & Testoni, G.) 447–451

Liver, rat, interaction of 8-anilinonaphthalene-1-sulphonate with whole and disrupted mitochondria from (Gains, N. & Dawson, A. P.) 157–160

Liver, rat, kinetics and specificity towards substrates and inhibitors of the mitochondrial pyruvate carrier of, and heart (Halestrap, A. P.) 85–96

Liver, rat, properties of a mitochondrial monocarboxylate transporter in, and heart and its possible function in cell control (Mowbray, J.) 41–47

Liver, rat, reactivation by dispersions of phospholipids of microsomal glucose 6-phosphatase from, after inhibition by pure and impure preparations of C-type phospholipases and protection by ox serum albumin against the inhibition (Cater, B. R., Trivedi, P. & Hallinan, T.) 279–294

Liver, rat, specificity and metabolic implications of the inhibition by a-cyano-4-hydroxyphenylaceticamide and related compounds of pyruvate transport in mitochondria isolated from, and other tissues (Halestrap, A. P. & Denton, R. M.) 97–106

Liver, rat, specificity of the effect of dietary cholesterol on the activity of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Gregory, K. W. & Booth, R.) 337–339
Lymph nodes, mesenteric, pig, enhanced biosynthesis de novo of phosphatidylinositol in lymphocytes from, after treatment with cationic amphiphilic drugs (Allan, D. & Michell, R. H.) 471-478

Lymphocytes, contribution of, to the metabolism of glucose by rat spleen slices (Suter, D. & Weidemann, M. J.) 583-594

Lymphocytes, mesenteric-lymph-node, pig, association of immunoglobulins and other polypeptides with the plasma membrane of (Chavin, S. I., Johnson, S. M. & Holliman, A.) 417-423

Lymphocytes, mesenteric-lymph-node, pig, enhanced biosynthesis de novo of phosphatidylinositol in, treated with cationic amphiphilic drugs (Allan, D. & Michell, R. H.) 471-478

Lymphocytes, pig, phytohaemagglutinin-stimulated, transport of thymidine in (Barlow, S. D. & Ord, M. G.) 295-302

'Malic' enzyme (EC 1.1.1.39), role of, in the control of the oxidation of proline via the tricarboxylic acid cycle in Japanese-beetle flight-muscle mitochondria (Hansford, R. G. & Johnson, R. N.) 389-401

Mammary gland, rabbit, effects of hormones on the turnover of fatty acid synthetase in, in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309-320

Mammary gland, rat, activities of alkaline ribonuclease and of ribonuclease inhibitor in, during the lactation cycle and in rat mammary-gland adenocarcinoma R3230AC (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67-76

Mammary gland, rat, lactating, topography of the biosynthesis of lactose by vesicles derived from the Golgi apparatus of (Kuhn, N. J. & White, A.) 77-84

Mannophosphoinositides, metabolism and function of, of Corynebacterium aquatium (Hackett, J. A. & Brennan, P. J.) 253-258

α-Mannosidase, rates of accumulation of the activities of, and other glycosidases during growth and differentiation of Dictyostelium discoideum (Every, D. & Ashworth, J. M.) 161-167

Membrane, cytoplasmic, biosynthesis and sidedness of nitrate reductase bound to, in an Escherichia coli mutant lacking cytochromes (Kemp, M. B., Haddock, B. A. & Garland, P. B.) 329-333

Membrane, cytoplasmic, biosynthesis of alternative redox carriers bound to, during aerobic growth of Escherichia coli in the presence of potassium cyanide (Ashcroft, J. R. & Haddock, B. A.) 349-352

Membrane fractions, pea-root, formation of oligoglycans linked to lipid during the biosynthesis of β-glucan by (Brett, C. T. & Northcote, D. H.) 107-117

Membrane, plasma, lymphocyte, mesenteric-lymph-node, pig, association of immunoglobulins and other polypeptides with (Chavin, S. I., Johnson, S. M. & Holliman, A.) 417-423

Membranes, mitochondrial, re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for 8-anilinoanthraquione-1-sulphonate and other fluorescence probes binding to (Gains, N. & Dawson, A. P.) 157-160

Membranes, non-myelin, content of sialic acid in crude fractions of rat brain myelin and evidence that it is due to contamination by (Langley, O. K.) 375-380

Membranes, plasma, posterior-pituitary-gland, ox, isolation and protein composition of, and neurosecretory-vesicle membranes (Vilhardt, H., Baker, R. V. & Hope, D. B.) 57-65

Membranes, synaptic, brain, guinea-pig, stimulation by cyclic nucleotides of the phospholipase A2–fatty acid uptake system of (Gullis, R. J. & Rowe, C. E.) 567-581

Membranes, synaptic, brain, guinea-pig, stimulation by synaptic transmitters of the incorporation of oleate into the phospholipids of (Gullis, R. J. & Rowe, C. E.) 557-565

Membranes, synaptic, cerebral-cortex, guinea-pig, stimulation by neurotransmitter substances and putative neurotransmitter substances of the net activity of phospholipase A2 of (Gullis, R. J. & Rowe, C. E.) 197-208

Membranes, thylakoid, chloroplast, pea-leaf, evidence that the circularly dichroic forms α-682 and α-710 of chlorophyll a are oriented at right-angles to, and that the circular dichroism is light-dependent (Gregory, R. P. F.) 487-497

Methanol, effects of single doses of ethanol, propan-2-ol or, on the metabolism of foreign compounds by rat liver microsomal fraction (Powis, G.) 269-277

6-O-Methylguanine residues, preferential accumulation of, in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea (MARGISON, G. P. & KLEIHUES, P.) 521-525

N-Methyl-N-nitrosourea, preferential accumulation of 6-O-methylguanine residues in rat brain deoxyribonucleic acid during repetitive administration of (Margison, G. P. & Kleihues, P.) 521-525

Mevalonate, regulation of the incorporation of, into ubiquinone in the rat (Ranganathan, S. & RamaSarma, T.) 35-39

Microsomal fraction, liver, pig, formation of mono-N-acetylhexosamine derivatives of dolichol diphasphate by (Palamarczyk, G. & Hemming, F. W.) 245-251

Microsomal fraction, liver, rat, effects of halothane on electron transport in (Berman, M. C., Ivanetich, K. M. & Kench, J. E.) 179-186

Microsomal fraction, liver, rat, effects of single doses of methanol, ethanol and propan-2-ol on the metabolism of foreign compounds by (Powis, G.) 269-277

Microsomal fraction, liver, rat, reactivation by dispersions of phospholipids of glucose 6-phosphatase from, after inhibition by pure and impure preparations of C-type phospholipases and protection by ox serum albumin against the inhibition (Cater, B. R., Trivedi, P. & Hallinman, T.) 279-294

Microsomal fraction, liver, rat, specificity of the effect of dietary cholesterol on the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of (Gregory, K. W. & Booth, R.) 337-339

Microsomal preparations, cartilage-cell, chick-embryo, biosynthesis of procollagen by (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129-138
Morphine, comparison

Mitochondria, Euglena gracilis, localization of enzymes of the glycollate pathway in heart and peroxisome-like particles (Collins, N. & Merrett, M. J.) 321–328

Mitochondria, flight-muscle, Japanese-beetle, nature and control of the tricarboxylic acid cycle in (Hansford, R. G. & Johnson, R. N.) 389–401

Mitochondria, heart, ox, simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles from (Beechey, R. B., Hubbard, S. A., Linnett, P. E., Mitchell, A. D. & Munn, E. A.) 533–537

Mitochondria, heart, rat, role of changes in the oxidized/reduced concentration ratio of free nicotinamide adenine dinucleotide and in the concentration of oxaloacetate in, in the effects of increased mechanical work by the isolated perfused organ during the production or uptake of ketone bodies (Opie, L. H. & Owen, P.) 403–415

Mitochondria, liver and heart, rat, kinetics and specificity towards substrates and inhibitors of the pyruvate carrier of (Halestrap, A. P.) 85–96

Mitochondria, liver and heart, rat, properties of a monocarboxylate transporter of, and its possible function in cell control (Mowbray, J.) 41–47

Mitochondria, liver, fat-cell and heart, rat, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of pyruvate transport in (Halestrap, A. P. & Denton, R. M.) 97–106

Mitochondria, liver, rat, effects of butacaine on the binding and translocation of adenine nucleotides in (Fayle, D. R. H., Barrett, G. J. & Bygrave, F. L.) 527–531

Mitochondria, liver, rat, essentiality of ubiquinone for the oxidation of choline by (Barrett, M. C. & Dawson, A. P.) 595–597

Mitochondria, liver, rat, whole and disrupted, interaction of 8-anilinonaphthalene-1-sulphonate with, and a re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for fluorescent probes binding to mitochondrial membranes (Gains, N. & Dawson, A. P.) 157–160

Monocarboxylate transporter, mitochondrial, liver and heart, rat, properties of, and its possible function in cell control (Mowbray, J.) 41–47

Moraxella sp. N.C.I.B. 11086, evidence for a reductive pathway in the metabolism of benzoate by, through anaerobic nitrate respiration (Williams, R. J. & Evans, W. C.) 1–10

Morphine, comparison of the effects of acute and chronic administration of nicotine hydrogen (+)-tartrate on the activity of tryptophan pyrrolase in rat liver with those of ethanol, phenobarbitone and (Badawy, A. A.-B. & Evans, M.) 425–432

Mucous, structure and metabolism of glycoproteins and glycosaminoglycans of, secreted by organ cultures of rabbit trachea (Gallagher, J. T. & Kent, P. W.) 187–196

Muscle, diaphragm, rat, isolated, regulation of the oxidation of branched-chain amino acids in, sciatic nerve and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374

Muscle, flight, Japanese-beetle, nature and control of the tricarboxylic acid cycle in (Hansford, R. G. & Johnson, R. N.) 389–401

Muscle, skeletal, rat, turnover of carntine in, and other tissues (Brooks, D. E. & McIntosh, J. E. A.) 439–445

Myelin, brain, rat, content of sialic acid in crude fractions of, and evidence that it is due to contamination by non-myelin membranes (Langley, O. K.) 375–380

Nerve, sciatic, rat, isolated, regulation of the oxidation of branched-chain amino acids in, diaphragm muscle and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374

Neurohypophysis, ox, isolation and protein composition of neurosecretory-vesicle membranes and plasma membranes from (Vilhardt, H., Baker, R. V. & Hope, D. B.) 57–65

Neurotransmitter substances, stimulation by, of the net activity of phospholipase A2 of synaptic membranes of guinea-pig cerebral cortex (Gullis, R. J. & Rowe, C. E.) 197–208

Neurotransmitters, stimulation by, of the incorporation of oleate into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 557–565

Nicotinamide-adenine dinucleotide, free, role of changes in the mitochondrial concentration of oxaloacetate and oxidized/reduced concentration ratio of, in the effects of increased mechanical work by isolated perfused rat heart during the production or uptake of ketone bodies (Opie, L. H. & Owen, P.) 403–415

Nicotinamide-adenine dinucleotide phosphate, reduced, effects of acute and chronic administration of nicotine hydrogen (+)-tartrate on the activity of tryptophan pyrrolase and the concentration of, in rat liver and their comparison with those of morphine, phenobarbitalone and ethanol (Badawy, A. A.-B. & Evans, M.) 425–432

Nicotine hydrogen (+)-tartrate, effects of acute and chronic administration of, on the activity of tryptophan pyrrolase in rat liver and their comparison with those of morphine, phenobarbitalone and ethanol (Badawy, A. A.-B. & Evans, M.) 425–432

Nitrate, evidence for a reductive pathway in the metabolism of benzoate by Moraxella sp. N.C.I.B. 11086 through anaerobic respiration utilizing (Williams, R. J. & Evans, W. C.) 1–10

Nitrate reductase, membrane-bound, biosynthesis and sidedness of, in an Escherichia coli mutant lacking cytochromes (Kemp, M. B., Haddock, B. A. & Garland, P. B.) 329–333

1975
Noradrenaline, stimulation by, and other neurotransmitter substances of the net activity of phospholipase A2 of synaptic membranes of guinea-pig cerebral cortex (Gullis, R. J. & Rowe, C. E.) 197–208
Noradrenaline, stimulation by, and other synaptic transmitters of the incorporation of olate into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 557–565
Nucleotides, cyclic, stimulation by, of the phospholipase A2–fatty acid uptake system of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 567–581

Olate, conversion of stearate into, by liver and perigenital adipose tissue from the obese–hyperglycaemic mouse (Enser, M.) 551–555
Olate, stimulation by cyclic nucleotides of the activity of phospholipase A2 and of the incorporation of, into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 567–581
Olate, stimulation by synaptic transmitters of the incorporation of, into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 557–565
Oligoglycans, formation of, linked to lipid during the biosynthesis of β-glucan by membrane fractions isolated from pea roots (Brett, C. T. & Northcote, D. H.) 107–117
Oxaloacetate, role of changes in the mitochondrial oxidized/reduced concentration ratio of free nicotinamide–adenine dinucleotide and concentration of, in the effects of increased mechanical work by isolated perfused rat heart during the production or uptake of ketone bodies (Opie, L. H. & Owen, P.) 403–415
2-Oxobutyrate, inhibitory effects of, on the oxidation of pyruvate and the biosynthesis of acetylcholine in rat brain minces (Gibson, G. E., Jope, R. & Blass, J. P.) 17–23
2-Oxoglutarate dehydrogenase, deficiency of, in the restricted facultative methylotrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 (Colby, J. & Zatman, L. J.) 505–511

Palmitoylcarnitine, transport of, and other substrates by a mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control (Mowbray, J.) 41–47
Pancreas, rat and guinea-pig, evidence that the interference by colchicine with the release of insulin by islets of Langerhans is due to inhibition of the polymerization of tubulin-like protein into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237–243
Parotid gland, rat, relationship of calcium ions to the receptor-controlled stimulation of the turnover of phosphatidylinositol in fragments of (Jones, L. M. & Michell, R. H.) 479–485
Pea (Pisum sativum) leaves, evidence that the circularly dichroic forms α-682 and α-710 of chlorophyll a are oriented at right-angles to the thylakoid membranes of whole chloroplasts from, and that the circular dichroism is light-dependent (Gregory, R. P. F.) 487–497
Pea (Pisum sativum) roots, formation of oligoglycans linked to lipid during the biosynthesis of β-glucan by membrane fractions isolated from (Brett, C. T. & Northcote, D. H.) 107–117
Pentose phosphate pathway, contribution of, to the metabolism of glucose in rat spleen slices (Suter, D. & Weidemann, M. J.) 583–594
Peroxisome-like particles, Euglena gracilis, localization of enzymes of the glycolate pathway in, and mitochondria (Collins, N. & Merrett, M. J.) 321–328
Phaseolus vulgaris, see Bean
Phenobarbitone, comparison of the effects of acute and chronic administration of nicotinic hydrogen (+) tarteate on the activity of tryptophan pyrrolase in rat liver with those of ethanol, morphine and (Badawy, A. A.-B. & Evans, M.) 425–432
Phenolphthalein disulphate, use of, as a model for investigation of the biliary excretion of anions in the rat (Powell, G. M., Jones, J. G., Olavesen, A. H. & Curtis, C. G.) 303–307
Phosphatidylinositol, enhanced biosynthesis of novo of, in pig mesenteric-lymph-node lymphocytes treated with catolic amphiphilic drugs (Allan, D. & Michell, R. H.) 471–478
Phosphatidylinositol, formation of mannophosphoinositides from, in Corynebacterium aquaticum (Hackett, J. A. & Brennan, P. J.) 253–258
Phosphatidylinositol, relationship of calcium ions to the receptor-controlled stimulation of the turnover of, in rat parotid-gland fragments (Jones, L. M. & Michell, R. H.) 479–485
Phosphoinositides, manno-, metabolism and function of, of Corynebacterium aquaticum (Hackett, J. A. & Brennan, P. J.) 253–258
Phospholipase A2, stimulation by cyclic nucleotides of the activity of, and of the incorporation of fatty acids into the phospholipids of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 567–581
Phospholipase A2, stimulation by neurotransmitter substances and putative neurotransmitter substances of the net activity of, of synaptic membranes of guinea-pig cerebral cortex (Gullis, R. J. & Rowe, C. E.) 197–208
Phospholipases, C-type, reactivation by dispersions of phospholipids of rat liver microsomal glucose 6-phosphatase after inhibition by pure and impure preparations of, and protection by ox serum albumin against the inhibition (Cater, B. R., Trivedi, P. & Hallinan, T.) 279–294
Phospholipids, effects of fenfluramine, halofenate and 2-(p-chlorophenoxy)isobutyrate and related compounds on the biosynthesis of glycerides and, in rat liver (Brindley, D. N. & Bowley, M.) 461–469
Phospholipids, reactivation by dispersions of, of rat liver microsomal glucose 6-phosphatase after inhibition by pure and impure preparations of C-type phospholipases (Cater, B. R., Trivedi, P. & Hallinan, T.) 279–294
Phospholipids, stimulation by cyclic nucleotides of the activity of phospholipase A2 and of the incorporation of fatty acids into, of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 567–581

Phospholipids, stimulation by synaptic transmitters of the incorporation of oleate into, of guinea-pig brain synaptic membranes (Gullis, R. J. & Rowe, C. E.) 557–565

Photorespiration, role of glycogen metabolism in, in Euglena gracilis (Collins, N. & Merrett, M. J.) 321–328

Phytohaemagglutinin, transport of thymidine in pig lymphocytes stimulated by the addition of (Barlow, S. D. & Ord, M. G.) 295–302

Pimelate, identification of, as an intermediate in the aerobic metabolism of cyclohexanecarboxylyle by Acinetobacter anitratum N.C.I.B. 10487 (Rho, E. M. & Evans, W. C.) 11–15

Pisum sativum, see Pea

Pituitary gland, anterior, ox, binding of cholchicine to slices of, and inhibition of the release of growth hormone (Sheterline, P., Schofield, J. G. & Mira, F.) 453–459

Pituitary gland, posterior, ox, isolation and protein composition of neurosecretory-vesicle membranes and plasma membranes from (Vilhardt, H., Baker, R. V. & Hope, D. B.) 57–65

Plasma membrane, see Membrane, plasma

Plasma, mouse, failure of adrenaline to increase the concentration of glucose in, in young animals after the injection of fructose (Thurston, J. H., Jones, E. M. & Hauhart, R. E.) 149–151

Plastids, development of adenosine triphosphatase activity in, during greening of bean leaves (Gregory, P. & Bradbeer, J. W.) 433–438

Platelets, human, accelerated uptake of 5-hydroxytryptamine by, enriched in sialic acid (Szabados, L., Mester, L., Michal, F. & Born, G. V. R.) 335–336

Polypeptides, association of, including immunoglobulins with the plasma membrane of pig mesenteric-lymph-node lymphocytes (Chavin, S. I., Johnson, S. M. & Holliman, A.) 417–423

Popillia japonica, see Japanese beetle

Potassium cyanide, biosynthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of (Ashcroft, J. R. & Haddock, B. A.) 349–352

Procollagen, biosynthesis and secretion of, by chick-embryo cartilage cells (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129–138

Prolactin, effects of, and other hormones on the turnover of fatty acid synthetase in rabbit mammary gland in organ culture (Speake, B. K., Dils, R. & Mayer, R. J.) 309–320

Proline, oxidation of, via the tricarboxylic acid cycle in Japanese-beetle flight-muscle mitochondria (Hansford, R. G. & Johnson, R. N.) 389–401

Propan-2-ol, effects of single doses of methanol, ethanol or, on the metabolism of foreign compounds by rat liver microsomal fraction (Powis, G.) 269–277

Protein, cholchicine-binding, binding of cholchicine to, in ox anterior-pituitary-gland slices and inhibition of the release of growth hormone (Sheterline, P., Schofield, J. G. & Mira, F.) 453–459

Protein, dietary, effect of restriction of, on the activity of deoxyribonucleic acid-dependent ribonucleic acid polymerase in rat liver (Andersson, G. M. & von der Decken, A.) 49–56

Protein, early biosynthesis of ribonucleic acid during the germination of rye embryos and its relationship to the early biosynthesis of (Sen, S., Payne, P. I. & Osborne, D. J.) 381–387

Protein, method for the measurement of the turnover of, in plants as exemplified by duckweed (Lemma minor) (Humphrey, T. J. & Davies, D. D.) 119–127

Protein, tubulin-like, evidence that the interference by cholchicine with the release of insulin by rat and guinea-pig islets of Langerhans is due to inhibition of the polymerization of, into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237–243

Proteins, association of, including immunoglobulins with the plasma membrane of pig mesenteric-lymph-node lymphocytes (Chavin, S. I., Johnson, S. M. & Holliman, A.) 417–423

Proteins, composition of, of neurosecretory-vesicle membranes and plasma membranes isolated from ox posterior pituitary gland (Vilhardt, H., Baker, R. V. & Hope, D. B.) 57–65

Protons, association of a flux of, with pyruvate transport by rat liver and heart mitochondria (Halestrap, A. P.) 85–96

Pyruvate, association of a proton flux with the transport of, by rat liver and heart mitochondria (Halestrap, A. P.) 85–96

Pyruvate carrier, mitochondrial, liver and heart, rat, kinetics and specificity towards substrates and inhibitors of (Halestrap, A. P.) 85–96

Pyruvate, decreased biosynthesis of acetylcholine accompanying impaired oxidation of, in rat brain minces (Gibson, G. E., Jope, R. & Blass, J. P.) 17–23

Pyruvate dehydrogenase phosphate phosphatase, role of, in the activation by insulin of pyruvate dehydrogenase in rat epididymal adipose tissue (Mukherjee, C. & Jungs, R. L.) 229–235

Pyruvate dehydrogenase, role of pyruvate dehydrogenase phosphate phosphatase in the activation by insulin of, in rat epididymal adipose tissue (Mukherjee, C. & Jungs, R. L.) 229–235

Pyruvate, specificity and metabolic implications of the inhibition by α-cyano-4-hydroxycinnamate and related compounds of the transport of, in isolated mitochondria from various tissues and in intact tissue preparations (Halestrap, A. P. & Denton, R. M.) 97–106

Pyruvate, transport of, and other substrates by a mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control (Mowbray, J.) 41–47

Rana catesbeiana, see Frog

Red blood cells, see Erythrocytes

Redox carriers, membrane-bound, alternative, biosynthesis of, during aerobic growth of Escherichia coli in the presence of potassium cyanide (Ashcroft, J. R. & Haddock, B. A.) 349–352

Reticulum, endoplasmic, cartilage-cell, chick-embryo, role of, in the biosynthesis and secretion of procollagen (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129–138

1975
INDEX OF SUBJECTS

Ribonuclease, alkaline, activities of, and of ribonuclease inhibitor in rat mammary gland during the lactation cycle and in rat mammary-gland adenocarcinoma R3230AC (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67–76

Ribonuclease inhibitor, activities of alkaline ribonuclease and, in rat mammary gland during the lactation cycle and in rat mammary-gland adenocarcinoma R3230AC (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67–76

Ribonuclease, early biosynthesis of, during the germination of rye embryos and its relationship to the early biosynthesis of protein (Sen, S., Payne, P. I. & Osborne, D. J.) 381–387

Ribonuclease polymerase, deoxyribonuclease acid-dependent, liver, rat, effect of feeding with a protein-restricted diet on the activity of (Andersson, G. M. & von der Decken, A.) 49–56

Ribosomes, liver, rat, inhibition by ricin of the activities of elongation factor 1-dependent and elongation factor 2-dependent guanosine triphosphatases of (Sperti, S., Montanaro, L., Mattioli, A. & Testoni, G.) 447–451

Ribosomes, membrane-bound, cartilage-cell, chick-embryo, biosynthesis of procollagen by (Harwood, R., Bhalla, A. K., Grant, M. E. & Jackson, D. S.) 129–138

Ricin, inhibition by, of the activities of elongation factor 1-dependent and elongation factor 2-dependent guanosine triphosphatases of rat liver ribosomes (Sperti, S., Montanaro, L., Mattioli, A. & Testoni, G.) 447–451

Ricinus communis, see Bean, castor

Roots, pea, formation of oligoglycans linked to lipid during the biosynthesis of β-glucan by membrane fractions isolated from (Brett, C. T. & Northcote, D. H.) 107–117

Rye (Secale cereale) embryos, early biosynthesis of ribonuclease acid during the germination of, and its relationship to the early biosynthesis of protein (Sen, S., Payne, P. I. & Osborne, D. J.) 381–387

Salivary gland, parotid, rat, relationship of calcium ions to the receptor-controlled stimulation of the turnover of phosphatidylinositol in fragments of (Jones, L. M. & Michell, R. H.) 479–485

Sciatic nerve, see Nerve, sciatic

Secale cereale, see Rye

Seeds, castor-bean, germinating, breakdown of lipid reserves in (Marriott, K. M. & Northcote, D. H.) 139–144

Serotonin, see 5-Hydroxytryptamine

Serum albumin, see Albumin, serum

Sialic acid, accelerated uptake of 5-hydroxytryptamine by human platelets enriched in (Szabados, L., Mester, L., Michal, F. & Born, G. V. R.) 335–336

Sialic acid, content of, in crude fractions of rat brain myelin and evidence that it is due to contamination by non-myelin membranes (Langley, O. K.) 375–380

Skeletal muscle, see Muscle, skeletal

Skin fibroblasts, human, stimulation by amyloid fibrils of the biosynthesis of glycosaminoglycans by (Palmoski, M. J. & Brandt, K. D.) 145–147

Slime mould (Dictyostelium discoideum), rates of accumulation of the activities of glycosidases during growth and differentiation of (Every, D. & Ashworth, J. M.) 161–167

Silme mould (Dictyostelium discoideum), rates of biosynthesis de novo and degradation of glycosidases during growth and differentiation of (Every, D. & Ashworth, J. M.) 169–177

Soil, aerobic metabolism of cyclohexanecarboxylate by Acinetobacter anitratus N.C.I.B. 10487 isolated from (Rho, E. M. & Evans, W. C.) 11–15

Soil, evidence for a reductive pathway in the metabolism of benzoate by Moraxella sp. N.C.I.B. 11086 isolated from, through anaerobic nitrate respiration (Williams, R. J. & Evans, W. C.) 1–10

Somatotrophin, see Growth hormone

Spleen, rat, quantitative aspects of the oxidation of glucose by slices of (Suter, D. & Weidemann, M. J.) 583–594

Spleen, rat, turnover of carnitine in, and other tissues (Brooks, D. E. & McIntosh, J. E.) 439–445

Spores, Bacillus cereus T, inactivation of glucose 6-phosphate dehydrogenase during germination and outgrowth of (Ordowski, M. & Goldman, M.) 259–268

Starvation, effect of, on the biosynthesis of ubiquinone in the rat (Ranganathan, S. & Ramasarma, T.) 35–39

Starvation, effects of inhibition of gluconeogenesis on ketogenesis in rats during (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 353–362

Stearate desaturase pathway, microsomal, liver, rat, effects of halothane on a cyanide-sensitive factor of (Berman, M. C., Ivanetich, K. M. & Kench, J. E.) 179–186

Stearate, desaturation of, by liver and perigenital adipose tissue from the obese—hyperglycaemic mouse (Enser, M.) 551–555

Steroids, investigation of the involvement of adenosine 3':5'-cyclic monophosphate in the stimulation by adenocorticotropicin of the biosynthesis of, by using column perfusion of isolated rat adrenal-gland cells (Hudson, A. M. & McMartin, C.) 539–544

Streptozotocin-diabetes, see Diabetes, streptozotocin-Submitochondrial particles, heart, ox, simple and rapid method for the preparation of adenosine triphosphatase from (Beechey, R. B., Hubbard, S. A., Linnett, P. E., Mitchell, A. D. & Munn, E. A.) 533–537

Synaptic membrane, see Membrane, synaptic

2-Thiouracil, effects of modification of thyroid function by the administration of powdered thyroid gland or, on the biosynthesis and 7α-hydroxylation of cholesterol in rat liver (Takeuchi, N., Ito, M., Uchida, K. & Yamamura, Y.) 499–503

Thylandok membrane, see Membrane, thylandok

Thymidine kinase, stimulation by phytohaemagglutinin of the activity of, in pig lymphocytes (Barlow, S. D. & Ord, M. G.) 295–302

Thymidine, transport of, in phytohaemagglutinin-stimulated pig lymphocytes (Barlow, S. D. & Ord, M. G.) 295–302

Thyroid gland, powdered, effects of modification of thyroid function by the administration of 2-thiouracil or, on the biosynthesis and 7α-hydroxylation of cholesterol in rat liver (Takeuchi, N., Ito, M., Uchida, K. & Yamamura, Y.) 499–503

Trachea, rabbit, structure and metabolism of glycoproteins and glycosaminoglycans secreted by organ cultures of (Gallagher, J. T. & Kent, P. W.) 187–196

Vol. 148
Transferrin, removal of iron from, by a cell-free system prepared from frog immature erythrocytes (James, G. T. & Frieden, E.) 341–343
Tricarboxylic acid cycle, activities of enzymes of, in the restricted facultative methylotrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 (Colby, J. & Zatman, L. J.) 505–511
Tricarboxylic acid cycle, nature and control of, in Japanese-beetle flight muscle (Hansford, R. G. & Johnson, R. N.) 389–401
Triglycerides, breakdown of, and other lipid reserves in castor-bean endosperm during germination (Marriott, K. M. & Northcote, D. H.) 139–144
Trimethylamine, activities of enzymes of the tricarboxylic acid cycle in the restricted facultative methylotrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 grown on (Colby, J. & Zatman, L. J.) 505–511
Trimethylamine, enzymological aspects of the pathways for the oxidation of, and assimilation of C1 compounds in the obligate methylotrophs bacterium spp. 4B6 and C2A1 and in the restricted facultative methylotrophs bacterium spp. W6A and W3A1 and Bacillus spp. PM6 and S2A1 (Colby, J. & Zatman, L. J.) 513–520
Tritium isotope (3H), use of a short exposure to growth medium containing water labelled with, in a method for the measurement of protein turnover in plants as exemplified by duckweed (Lemna minor) (Humphrey, T. J. & Davies, D. D.) 119–127
Tryptophan pyrrolase, effects of acute and chronic administration of nicotine hydrogen (+)-tartrate on the activity of, in rat liver and their comparison with those of morphine, phenobarbital and ethanol (Badawy, A. A.-B. & Evans, M.) 425–432
Tubulin, binding of colchicine to, in ox anterior-pituitary-gland slices and inhibition of the release of growth hormone (Sheterline, P., Schofield, J. G. & Mira, F.) 453–459
Tubulin-like protein, evidence that the interference by colchicine with the release of insulin by rat and guinea-pig islets of Langerhans is due to inhibition of the polymerization of, into microtubules (Montague, W., Howell, S. L. & Green, I. C.) 237–243
Tumour R3230AC, mammary-gland, rat, activities of alkaline ribonuclease and of ribonuclease inhibitor in rat mammary gland during the lactation cycle and in (Liu, D. K., Williams, G. H. & Fritz, P. J.) 67–76
Ubiquinone, essentiality of, for the oxidation of choline by rat liver mitochondria (Barrett, M. C. & Dawson, A. P.) 595–597
Ubiquinone, regulation of the biosynthesis of, in the rat (Ranganathan, S. & Ramasarma, T.) 35–39
Urate, effects of adenosine monophosphate and guanosine monophosphate on the biosynthesis of, de novo by isolated chick liver and kidney cells (Badenoch-Jones, P. & Buttery, P. J.) 599–601
Urine, identification of metabolites of salts of hexadecyl sulphate in, of the rat, the dog and the human (Merits, I.) 219–228
Valine, regulation of the oxidation of leucine, isoleucine and, in isolated rat diaphragm muscle, sciatic nerve and aorta (Buse, M. G., Jursinic, S. & Reid, S. S.) 363–374
[3H]Water, use of a short exposure to growth medium containing, in a method for the measurement of protein turnover in plants as exemplified by duckweed (Lemna minor) (Humphrey, T. J. & Davies, D. D.) 119–127
The BIOCHEMICAL JOURNAL

Cellular Aspects

Volume 148

1975

EDITORIAL BOARD

Chairman
J. T. Dingle

Deputy Chairmen
H. B. F. Dixon
K. M. Jones
J. E. Cremer
N. M. Green*

J. W. Bradbeer
H. G. Britton
R. B. Cain
M. Cannon
D. D. Davies
R. M. Denton
F. M. Dickinson
R. R. Dils
D. C. Ellwood
P. B. Garland
J. J. Holbrook
M. R. Hollaway
R. C. Hughes
J. D. Judah
A. E. Kellie
U. E. Loening

Editorial Secretary
J. D. Killip

Assistant Editorial Secretary
E. N. Maltby

R. D. Marshall
P. A. Mayes
J. C. Metcalfe
R. E. Offord
D. V. Parke
R. N. Perham
C. I. Pogson
G. K. Radda
E. V. Rowsell
A. P. Ryle
S. P. Spragg*
D. R. Stanworth
I. O. Walker
D. H. Williamson

* Nominated by the British Biophysical Society

Overseas Advisory Panel

London: The Biochemical Society © 1975