OFFICERS AND COMMITTEE, 1974–75

Chairman of the Committee
T. S. Work

Treasurer
D. F. Elliott

General Secretary
H. M. Keir

Publications Secretary
R. M. C. Dawson

Meetings Secretary
J. B. Lloyd

Assistant Meetings Secretary
H. F. Bradford

Committee
B. A. Askonas, F.R.S.
H. S. Bachelard
K. Burton
C. A. Fawson
T. W. Goodwin, F.R.S.
K. Griffiths
M. G. Harrington
J. N. Hawthorne
C. H. S. Hitchcock
R. J. B. King
C. F. Mills

T. F. Slater
R. E. van Heyningen
D. G. Walker *
A. M. White

*Ex officio Member of Committee; representative of Editorial Board of the Biochemical Journal.

Executive Secretary
A. I. P. Henton (7 Warwick Court, London WC1R 5DP)

The Biochemical Society exists to advance the science of biochemistry through meetings and publications. Several meetings a year are held, each at a different place; original papers are presented and special topics are discussed at symposia and colloquia.

Persons interested in biochemistry are eligible for election as Members. Details of further facilities accorded to Members, and forms of application for membership, are available from the Executive Secretary, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)].
The Biochemical Journal is published and distributed by the Biochemical Society. It is published twice monthly, alternate issues being devoted to Molecular Aspects and to Cellular Aspects of biochemistry. It is planned that in 1974 eight volumes, each volume being made up of three issues, will be published according to the following schedule:

<table>
<thead>
<tr>
<th>Molecular Aspects</th>
<th>Cellular Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan. 137 1</td>
<td>15 Jan. 138 1</td>
</tr>
<tr>
<td>1 Feb. 137 2</td>
<td>15 Feb. 138 2</td>
</tr>
<tr>
<td>1 Mar. 137 3</td>
<td>15 Mar. 138 3</td>
</tr>
<tr>
<td>1 Apr. 139 1</td>
<td>15 Apr. 140 1</td>
</tr>
<tr>
<td>1 May 139 2</td>
<td>15 May 140 2</td>
</tr>
<tr>
<td>1 June 139 3</td>
<td>15 June 140 3</td>
</tr>
<tr>
<td>1 July 141 1</td>
<td>15 July 142 1</td>
</tr>
<tr>
<td>1 Aug. 141 2</td>
<td>15 Aug. 142 2</td>
</tr>
<tr>
<td>1 Sept. 141 3</td>
<td>15 Sept. 142 3</td>
</tr>
<tr>
<td>1 Oct. 143 1</td>
<td>15 Oct. 144 1</td>
</tr>
<tr>
<td>1 Nov. 143 2</td>
<td>15 Nov. 144 2</td>
</tr>
<tr>
<td>1 Dec. 143 3</td>
<td>15 Dec. 144 3</td>
</tr>
</tbody>
</table>

Biochemical Society Transactions. This is now a separate publication (see below). Volume 2 will be published in 1974 in six parts.

Subscription Rates to the Biochemical Journal. For non-members of the Biochemical Society the subscription in 1974 is £95.00. Subject to exchange variation the rate for U.S.A., Canada and Mexico is $265.00 (despatch by air freight to these countries).

Subscribers to the Biochemical Journal can subscribe to Biochemical Society Transactions on a joint subscription, saving £10 ($25.00). The joint subscription is £100.00 ($280.00 to addressees in U.S.A., Canada and Mexico; both publications despatched by air freight).

Terms are cash with order or against proforma invoice. Orders and subscriptions should be sent to the Biochemical Society (Publications), P.O. Box 32, Commerce Way, Whitehall Road Industrial Estate, Colchester CO2 8HP, Essex, or through your normal agent.

Claims regarding issues lost or damaged in transit should be addressed to the Biochemical Society at the address given in the preceding paragraph. Claims cannot be entertained if they are received later than three months after the date of posting.

Back Numbers. Enquiries for volumes 1–19 of the Journal should be addressed to William Dawson & Sons Ltd., Back Issues Department, Cannon House, Park Farm Road, Folkestone, Kent. Quotations for available issues of subsequent volumes and parts of the Journal, and also of Transactions, may be obtained on application to The Biochemical Society (Publications), P.O. Box 32, Commerce Way, Whitehall Road Industrial Estate, Colchester CO2 8HP, Essex.

Microfilms. Volumes 1–89 (1906–1963) of the Journal have been recorded on microfilm. Details are available from the Biochemical Society's Colchester office.

Advertisements. Applications for advertising space should be sent to the Advertising Department, The Biochemical Society, 7 Warwick Court, London WC1R 5DP [01-242 1076 (4 lines)]. Copy is required eight weeks before publication date. Rate cards are available on request.

(iii)
Index of Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
<th>Author</th>
<th>Page</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acton, G. J.</td>
<td>449</td>
<td>Gillette, P. C.</td>
<td>685</td>
<td>Marsh, C. A.</td>
<td>491</td>
</tr>
<tr>
<td>Allan, D.</td>
<td>591</td>
<td>Grant, M. E.</td>
<td>641</td>
<td>Matthews, E. K.</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>599</td>
<td>Greco, M.</td>
<td>695</td>
<td>Mellenberger, R. W.</td>
<td>659</td>
</tr>
<tr>
<td>Bajpai, P. C.</td>
<td>567</td>
<td>Haddock, B. A.</td>
<td>703</td>
<td>Mellows, G.</td>
<td>673</td>
</tr>
<tr>
<td>Bauman, D. E.</td>
<td>659</td>
<td>Hansford, R. G.</td>
<td>509</td>
<td>Michell, R. H.</td>
<td>583</td>
</tr>
<tr>
<td>Bégé-Héick, N.</td>
<td>465</td>
<td>Harwood, R.</td>
<td>641</td>
<td>Montanaro, L.</td>
<td>695</td>
</tr>
<tr>
<td>Bone, A. H.</td>
<td>499</td>
<td>Hearn, D. J.</td>
<td>673</td>
<td>Mouat, B.</td>
<td>629</td>
</tr>
<tr>
<td>Booth, A. G.</td>
<td>575</td>
<td>Heath, D. F.</td>
<td>527</td>
<td>Norris, K. A.</td>
<td>667</td>
</tr>
<tr>
<td>Bourassa, M.</td>
<td>465</td>
<td>Hedgeskov, C. J.</td>
<td>653</td>
<td>Novello, F.</td>
<td>695</td>
</tr>
<tr>
<td>Bowen, N. L.</td>
<td>611</td>
<td>Heick, H. M. C.</td>
<td>465</td>
<td>Reed, K. C.</td>
<td>555</td>
</tr>
<tr>
<td>Bruchovsky, N.</td>
<td>483</td>
<td>Hems, D. A.</td>
<td>611</td>
<td>Reid, E.</td>
<td>667</td>
</tr>
<tr>
<td>Buckley, J. T.</td>
<td>521</td>
<td>Hinton, R. H.</td>
<td>667</td>
<td>Rodnight, R.</td>
<td>605</td>
</tr>
<tr>
<td>Bygrave, F. L.</td>
<td>555</td>
<td>Hoppel, C. L.</td>
<td>699</td>
<td>Sabri, M. I.</td>
<td>499</td>
</tr>
<tr>
<td>Cannon, M.</td>
<td>457</td>
<td>Huttner, W. B.</td>
<td>691</td>
<td>Saccone, C.</td>
<td>695</td>
</tr>
<tr>
<td>Capito, K.</td>
<td>653</td>
<td>Issa, F. S.</td>
<td>667</td>
<td>Saggerson, E. D.</td>
<td>477</td>
</tr>
<tr>
<td>Claycomb, W. C.</td>
<td>685</td>
<td>Jackson, D. S.</td>
<td>641</td>
<td>Salmon, D. M. W.</td>
<td>611</td>
</tr>
<tr>
<td>Cox, R. A.</td>
<td>699</td>
<td>Jimenez, A.</td>
<td>457</td>
<td>Schopfer, P.</td>
<td>449</td>
</tr>
<tr>
<td>Cremer, J. E.</td>
<td>527</td>
<td>Jones, L. M.</td>
<td>583</td>
<td>Seitz, H. J.</td>
<td>691</td>
</tr>
<tr>
<td>Davison, A. N.</td>
<td>499</td>
<td>Kapoor, C. L.</td>
<td>567</td>
<td>Sperti, S.</td>
<td>695</td>
</tr>
<tr>
<td>Dean, P. M.</td>
<td>637</td>
<td>Karunanayake, E. H.</td>
<td>673</td>
<td>Stirpe, F.</td>
<td>695</td>
</tr>
<tr>
<td>Dobrotka, M.</td>
<td>667</td>
<td>Kenny, A. J.</td>
<td>575</td>
<td>Tarnowski, W.</td>
<td>691</td>
</tr>
<tr>
<td>Downie, J. A.</td>
<td>703</td>
<td>Krishna Murti, C. R.</td>
<td>567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenselau, A.</td>
<td>619</td>
<td>Krone, W.</td>
<td>691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishman, W. H.</td>
<td>491</td>
<td>Lesser, B.</td>
<td>483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flanagan, P. R.</td>
<td>545</td>
<td>Lin, C.-W.</td>
<td>491</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long, C.</td>
<td>629</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTES FOR CONTRIBUTORS

It is the policy of the *Biochemical Journal* to publish papers in English in all fields of biochemistry, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary or inconclusive experiments should not generally be described.

Two types of paper are accepted by the editors:

Full-length papers. Papers submitted for publication should be sent together with an extra copy of the synopsis (see below) to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP. Typescripts should bear the name and address of the person to whom the proof of the paper is to be sent.

Papers submitted should be written concisely. Special attention is directed to the sections below concerning the preparation of the typescript. Typescripts that are not concise or do not conform to the conventions of the *Biochemical Journal* will be returned to the authors for revision. If a paper that has been returned to an author for revision is not resubmitted within one month, it will, on resubmission, be deemed to be a new paper and the date of receipt altered accordingly. A revised paper containing a significant amount of new material will also be redated.

Submission of a paper to the Editorial Board implies that it reports unpublished work, that it is not under consideration for publication elsewhere, and that if accepted for the *Biochemical Journal* it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board.

Papers should be headed by a concise but informative full title, by the names of the authors (preferably with one forename in full for each author) and by the name and address of the establishment where the work was performed. Details of financial support appear in the acknowledgements at the end of the paper.

Before preparing papers authors should consult a current issue of the Journal to make themselves familiar with the general format, such as the use of cross-headings, lay-out of tables and citation of references. Papers should be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size and wide margins. The top copy should be submitted. It cannot be overemphasized that the need for revision of badly prepared typescripts inevitably leads to delays in publication.

Papers on specialized subjects should be presented so that they are intelligible to the ordinary reader of the Journal. Sufficient information must be included to permit repetition of the experimental work.

Short Communications. Typescripts should be submitted in duplicate, written in English, and conform strictly to the form of the Journal as far as spelling and abbreviations are concerned. Each Short Communication should be provided with a short synopsis (normally not exceeding 50 words). Such communications should not exceed 2400 words in length inclusive of the title, references etc. Authors may include up to two insertions such as tables, figures or schemes; in these cases authors must assess what proportion of a page these insertions will occupy and reduce the number of text words accordingly at the rate of 700 words per full page of the Journal. Authors are advised that the preparation of tables and especially figures is liable to cause a slight increase in publication time. Under no circumstances whatsoever can a complete Short Communication occupy more than four pages of the Journal. Communications should be addressed to the Editorial Secretary, The Biochemical Journal, 7 Warwick Court, London WC1R 5DP. Papers should be complete in themselves; (1) the methods used in experimental work must be sufficiently described or sufficient references given to allow repetition of the work; (2) sufficient indication of the results of experimental work must be included to justify the claims made.
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Index of Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTON, G. J. & SCHOPPER, P. Phytocrome-induced synthesis of ribonuclease de novo in lupin hypocotyl sections 449–455</td>
</tr>
<tr>
<td>ALBANO, J. D. M., BROWN, B. L., EKINS, R. P., TAIT, S. A. S. & TAIT, J. F. The effects of potassium, 5-hydroxytryptamine, adrenocorticotropic and angiotensin II on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasciculata cells 391–400</td>
</tr>
<tr>
<td>ALBERTI, K. G. M. M. see BLACKSHEAR, P. J. 279–286</td>
</tr>
<tr>
<td>ALEXIS, S. D., YOUNG, V. R. & GILL, D. M. Concentration of elongation factor 2 in rat skeletal muscle during protein depletion and re-feeding 185–188</td>
</tr>
<tr>
<td>ALLAN, D. & MICHELL, R. H. Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes. Activity at pH 5.5 and pH 7.0 591–597</td>
</tr>
<tr>
<td>ALLAN, D. & MICHELL, R. H. Phosphatidylinositol cleavage in lymphocytes. Requirement for calcium ions at a low concentration and effects of other cations 599–604</td>
</tr>
<tr>
<td>ASHWORTH, J. M. see HAMES, B. D. 301–315, 317–325</td>
</tr>
<tr>
<td>BADENOC-JONES, P. & BAUM, H. Progesterone-induced lysis of rat kidney lysosomes as studied by changes in light-absorbance 1–6</td>
</tr>
<tr>
<td>BAJPAI, P. C. see KAPOOR, C. L. 567–573</td>
</tr>
<tr>
<td>BALLARD, F. J. see KNOWLES, S. E. 401–411</td>
</tr>
<tr>
<td>BARKER, G. R., BRAY, C. M. & WALTER, T. J. The development of ribonuclease and acid phosphatase during germination of Pisum arvense 211–219</td>
</tr>
<tr>
<td>BAUM, H. see BADENOC-JONES, P. 1–6</td>
</tr>
<tr>
<td>BAUMAN, D. E. see MELLENBERGER, R. W. 659–665</td>
</tr>
<tr>
<td>BEEDLE, A. S., MUNDAY, K. A. & WILTON, D. C. Studies on the biosynthesis of tetrahymanol in Tetrahymanella pyriformis. The mechanism of inhibition by cholesteryl 57–64</td>
</tr>
<tr>
<td>BELL, P. A. see LAWSON, D. E. M. 37–46</td>
</tr>
<tr>
<td>BLACKSHEAR, P. J., HOLLOWAY, P. A. H. & ALBERTI, K. G. M. M. The metabolic effects of sodium dichloracetate in the starved rat 279–286</td>
</tr>
<tr>
<td>BONE, A. H. see SABRI, M. I. 499–507</td>
</tr>
<tr>
<td>BOOTH, A. G. & KENNY, A. J. A rapid method for the preparation of microvilli from rabbit kidney 575–581</td>
</tr>
<tr>
<td>BOURASSA, M. see BÉGIN-HEICK, N. 465–475</td>
</tr>
<tr>
<td>BOWEN, N. L. see SALMON, D. M. W. 611–618</td>
</tr>
<tr>
<td>BOWEN, V. & LAZARUS, N. R. Insulin release from the perfused rat pancreas. Mode of action of tolbutamide 385–389</td>
</tr>
<tr>
<td>BOWLES, D. J. & NORTHCOTE, D. H. The amounts and rates of export of polysaccharides found within the membrane system of maize root cells 139–144</td>
</tr>
<tr>
<td>BRADFORD, N. M. see MCGIVAN, J. D. 359–364</td>
</tr>
<tr>
<td>BRAND, L. M. & HARPER, A. E. Effect of glucagon on phenylalanine metabolism and phenylalanine-degrading enzymes in the rat 231–245</td>
</tr>
<tr>
<td>BRAY, C. M. see BARKER, G. R. 211–219</td>
</tr>
<tr>
<td>BREW, K. see POWELL, J. T. 203–209</td>
</tr>
<tr>
<td>BROWN, B. L. see ALBANO, J. D. M. 391–400</td>
</tr>
<tr>
<td>BRUCHOVSKY, N. see LESSER, B. 429–431, 483–489</td>
</tr>
<tr>
<td>BUCKLEY, J. T. Calcium ion transport by pig erythrocyte membrane vesicles 521–526</td>
</tr>
<tr>
<td>BYGRAVE, F. L. see REED, K. C. 555–566</td>
</tr>
<tr>
<td>CANNON, M. & JIMENEZ, A. Lomofungin as an inhibitor of nucleic acid synthesis in Saccharomyces cerevisiae 457–463</td>
</tr>
<tr>
<td>CAPANO, M. see CROMPTON, M. 127–137</td>
</tr>
<tr>
<td>CAPITO, K. & HEDESKOV, C. J. The effect of starvation on phosphodiesterase activity and the content of adenosine 3':5'-cyclic monophosphate in isolated mouse pancreatic islets 653–658</td>
</tr>
<tr>
<td>CARIGGLA, N. see Patel, R. P. 441–443</td>
</tr>
<tr>
<td>CARR, N. G. see TOVEY, K. C. 47–56</td>
</tr>
<tr>
<td>CHAPPELL, J. B. see DANKS, S. M. 353–358; MCGIVAN, J. D. 359–364</td>
</tr>
<tr>
<td>CHENOWETH, M. see KATZ, J. 171–183</td>
</tr>
<tr>
<td>CLAYCOMB, W. C. see GILLETTE, P. C. 685–690</td>
</tr>
<tr>
<td>COONEY, N. see MILLER, H. A. 27–35</td>
</tr>
<tr>
<td>COORE, H. G. & FIELD, B. Properties of pyruvate dehydrogenase of rat mammary tissue and its changes during pregnancy, lactation and weaning 87–95</td>
</tr>
<tr>
<td>CORNELL, N. W., LUND, P. & KREBS, H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes 327–337</td>
</tr>
<tr>
<td>COX, R. A. & HOPEL, C. L. Carnitine and trimethylaminobutyrate synthesis in rat tissues 699–701</td>
</tr>
<tr>
<td>CREMER, J. E. & HEATH, D. F. The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data 527–544</td>
</tr>
<tr>
<td>CROMPTON, M., PALMIERI, F., CAPANO, M. & QUAGLIERIELLO, E. The transport of sulphate and sulphite in rat liver mitochondria 127–137</td>
</tr>
<tr>
<td>DANKS, S. M. & CHAPPELL, J. B. Changes in intramitochondrial adenine nucleotides in blowfly flight-muscle mitochondria 353–358</td>
</tr>
<tr>
<td>DAVISON, A. N. see SABRI, M. I. 499–507</td>
</tr>
<tr>
<td>DAVISON, S. C. & WILLS, E. D. Phospholipid synthesis in rat liver endoplasmic reticulum after the administration of phenobarbitone and 20-methylcholanthrene 19–26</td>
</tr>
<tr>
<td>DEAN, P. M. & MATTHEWS, E. K. Calcium-ion binding to the chromaffin-granule surface 637–640</td>
</tr>
<tr>
<td>DEGN, H. see PETERSEN, L. C. 247–252</td>
</tr>
<tr>
<td>DENTON, R. M. see HALESTRAP, A. P. 345–377</td>
</tr>
<tr>
<td>DOBROTA, M. see NORRIS, K. A. 667–671</td>
</tr>
<tr>
<td>DOWNIE, J. A. see HADDOCK, B. A. 703–706</td>
</tr>
<tr>
<td>DUNN, A. see KATZ, J. 161–170, 171–183</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>SCHOPFER, P.</td>
</tr>
<tr>
<td>SCOPES, R. K.</td>
</tr>
<tr>
<td>SEITZ, W.</td>
</tr>
<tr>
<td>SELWYN, M. J.</td>
</tr>
<tr>
<td>SIDDLE, K. & HALES, C. N.</td>
</tr>
<tr>
<td>SIDDLE, K. & HALES, C. N.</td>
</tr>
<tr>
<td>SINGHAL, R. L.</td>
</tr>
<tr>
<td>SMITH, A. G. & Goad, L. J.</td>
</tr>
<tr>
<td>SMITH, I. & MITCHELL, P. D.</td>
</tr>
<tr>
<td>SMITH, R. M., OSBORNE-WHITE, W. S. & GAWTHORNE, J. M.</td>
</tr>
<tr>
<td>SMITH, R. M. see also GAWTHORNE, J. M.</td>
</tr>
<tr>
<td>SNELL, K.</td>
</tr>
<tr>
<td>SPERTI, S.</td>
</tr>
<tr>
<td>SPILLER, G. H.</td>
</tr>
<tr>
<td>STIRPE, F.</td>
</tr>
<tr>
<td>TAIT, J. F.</td>
</tr>
<tr>
<td>TAIT, S. A. S. see ALBANO, J. D. M.</td>
</tr>
<tr>
<td>TARNOWSKI, W.</td>
</tr>
<tr>
<td>TAYLOR, L.</td>
</tr>
<tr>
<td>THOMAS, G. & THRELFALL, D. R.</td>
</tr>
<tr>
<td>TOVEY, K. C., SPILLER, G. H., OLDHAM, K. G., LUCAS, N. & CARR, N. G.</td>
</tr>
<tr>
<td>TRUMBLE, T. E.</td>
</tr>
<tr>
<td>WALLIS, K.</td>
</tr>
<tr>
<td>WALTER, T. J.</td>
</tr>
<tr>
<td>WATLING-PAYNE, A. S. & SELWYN, M. J.</td>
</tr>
<tr>
<td>WELDER, M. & RODNIGHT, R.</td>
</tr>
<tr>
<td>WILLS, E. D.</td>
</tr>
<tr>
<td>WILTON, D. C.</td>
</tr>
<tr>
<td>YOUNG, V. R.</td>
</tr>
<tr>
<td>ZBARKSY, S. H.</td>
</tr>
</tbody>
</table>
Acetate, lipogenesis from, and other substrates in isolated rabbit perirenal-adipose-tissue fat-cells (Saggerson, E. D.) 477–482
Acetate, mechanism of the inhibition by cholesterol of the biosynthesis of tetrahymanol from, in Tetrahymena pyriformis (Beedle, A. S., Munday, K. A. & Wilton, D. C.) 57–64
Acetate, production and utilization of, in the rat and the sheep (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Acetylcholine, stimulation by, of the breakdown of phosphatidylinositol in fragments of rat parotid salivary gland (Jones, L. M. & Michell, R. H.) 583–590
Acetyl-coenzyme A carboxylase, role of long-chain fatty acyl-coenzyme A thioesters and citrate in the hormonal regulation of the activity of, in rat epididymal adipose tissue (Hales, A. P. & Denton, R. M.) 365–377
Acetyl-coenzyme A hydrolase, activities of acetylcoenzyme A synthetase and, in various tissues of the rat and the sheep (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Acetyl-coenzyme A, steady-state concentrations of coenzyme A, 3-carboxypropionyl-coenzyme A and, in blowfly flight muscle and isolated mitochondria and the control of tricarboxylic acid-cycle oxidations (Hansford, R. G.) 509–519
Acetyl-coenzyme A, synthetase, activities of acetylcoenzyme hydrolase and, in various tissues of the rat and the sheep (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Acetyl-coenzyme A, use of compartmental analysis of isotopic data for estimation of the rates of formation of, from glucose and ketone bodies in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Acid phosphatase, see Phosphatase, acid
Adenine nucleotides, changes in the concentrations of, in blowfly flight-muscle mitochondria (Danks, S. M. & Chappell, J. B.) 335–358
Adenosine 3':5'-cyclic monophosphate, 6-N2',O-di-butyryl, stimulation by, and glucocorticoids of the activity of phosphoenolpyruvate carbox kinase in isolated perfused rat liver (Huttner, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691–693
Adenosine 3':5'-cyclic monophosphate, effect of starvation on the activity of phosphodiesterases and the concentration of, in isolated mouse pancreatic islets of Langerhans (Capito, K. & Hed eskov, C. J.) 653–658
Adenosine 3':5'-cyclic monophosphate, effects of local anaesthetics on hormone-stimulated lipolysis and on the concentration of, in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 345–351
Adenosine 3':5'-cyclic monophosphate, effects of potassium ions, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II on the concentration of, in suspensions of dispersed rat adrenal-gland zona glomerulosa and zona fasciculata cells (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400
Adenosine 3':5'-cyclic monophosphate, increase in the concentration of, in and potentiation of the release of growth hormone by heifer anterior-pituitary-gland slices incubated in the presence of 3-isobutyl-1-methylxanthine (Schofield, J. G. & McPherson, M.) 295–300
Adenosine 3':5'-cyclic monophosphate, measurement of the effects of, on the dynamics of steroidogenesis in isolated rat adrenal-gland cells by using column perfusion (Lowry, P. J. & McMartin, C.) 287–294
Adenosine 3':5'-cyclic monophosphate, 8-methylthio-, effects of prostaglandin E1 and, on the growth and division of human WI 38 fibroblast cells (Kurtz, M. J., Polgar, P., Taylor, L. & Rutenburg, A. M.) 339–344
Adenosine 3':5'-cyclic monophosphate, relationship between the concentration of, and the anti-lipolytic action of insulin in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 97–103
Adenosine 3':5'-cyclic monophosphate, role of, in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) on carbohydrate metabolism in rat liver and kidney (Kacew, S. & Singhal, R. L.) 145–152
Adenosine monophosphate, possible role of, in the control of the oxidative activity of blowfly flight-muscle mitochondria (Danks, S. M. & Chappell, J. B.) 353–358
Adenosine triphosphate, effects of, on the transport of calcium ions by and the concentrations of polyphosphoinositides in pig erythrocyte membrane vesicles (Buckley, J. T.) 521–526
Adenosine triphosphate, intracellular, influences of extracellular pH, efflux of univalent cations and, on the influx of calcium ions into human erythrocytes during cold storage (Mouat, B. & Long, C.) 629–636
Adenylate cyclase, involvement of, in the stimulation by tolbutamide of the release of insulin by rat pancreas islets of Langerhans (Boven, V. & Lazarus, N. R.) 385–389
Adipocytes, epididymal, rat, isolated, effects of local anaesthetics on hormone-stimulated lipolysis and on the concentration of adenosine 3':5'-cyclic monophosphate in (Siddle, K. & Hales, C. N.) 345–351
Adipocytes, epididymal, rat, isolated, relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the anti-lipolytic action of insulin in (Siddle, K. & Hales, C. N.) 97–103
Adipocytes, perirenal-adipose-tissue, rabbit, isolated, lipogenesis in (Saggerson, E. D.) 477–482
Adipose tissue, epididymal, rat, role of long-chain fatty acyl-coenzyme A thioesters and citrate in the hormonal regulation of the activity of acetyl-coenzyme A carboxylase in (Hales, A. P. & Denton, R. M.) 365–377
Adipose tissue, perirenal, rabbit, lipogenesis in fat-cells isolated from (Saggerson, E. D.) 477–482
Adrenal-gland cells, rat, isolated, measurement of the dynamics of stimulation and inhibition of steroidogenesis in, by using column perfusion (Lowry, P. J. & McMartin, C.) 287–294
Adrenal-gland medulla, ox, binding of calcium ions to the surface of chromaffin granules from (Dean, P. M. & Matthews, E. K.) 637–640
Adrenal gland, rat, effects of potassium ions, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II on the concentration of adenosine 3':5'-cyclic mono-
phosphate in suspensions of dispersed zona glomerulosa and zona fasciculata cells of (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400
Adrenaline, role of long-chain fatty acyl-coenzyme A thioesters and citrate in the regulation by insulin and, of the activity of acyl-coenzyme A carboxylase in rat epididymal adipose tissue (Halestrap, A. P. & Denton, R. M.) 365–377
Adrenocorticotropic hormone, effects of, and other agents stimulating steroidogenesis on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat-adrenal-gland zona glomerulosa and zona fasciculata cells (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400
Adrenocorticotropic hormone, measurement of the effects of, on the dynamics of steroidogenesis in isolated rat adrenal-gland cells by using column perfusion (Lowry, P. J. & McMartin, C.) 287–294
Allium cepa, see Onion
Amino acids, uniformly 14C-labelled, use of *Anacystis nidulans* for the preparation of (Tovey, K. C., Spiller, G. H., Oldham, K. G., Lucas, N. & Carr, N. G.) 47–56
Anacystis nidulans, use of, for the preparation of uniformly 14C-labelled nucleotides and amino acids (Tovey, K. C., Spiller, G. H., Oldham, K. G., Lucas, N. & Carr, N. G.) 47–56
Anaesthetics, local, effects of, on hormone-stimulated lipolysis and on the concentration of adenosine 3':5'-cyclic monophosphate in isolated rat epididymal fat cells (Siddle, K. & Hales, C. N.) 345–351
Androgen, effect of duration of the period after castration on the response of the rat ventral prostate gland to (Lesser, B. & Bruchovsky, N.) 429–431
Androgens, effects of, on the kinetics of cell proliferation in regenerating rat prostate gland (Lesser, B. & Bruchovsky, N.) 483–489
Androgens, increase in the activity of β-glucuronidase in mouse kidney Golgi apparatus stimulated by, induced by the administration of gonadotrophin (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497
Androst-4-ene-3,17-dione, differences in the mechanisms for the regulation of the activity of nuclear nicotinamide adenine dinucleotide phosphate-dependent 3-oxo 5α-reductase towards, in rat, liver, kidney and prostate gland (Gustafsson, J.-A. & Pousette, A.) 273–277
Angiotensin II, effects of, and other agents stimulating steroidogenesis on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat adrenal-gland zona glomerulosa and zona fasciculata cells (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400
Ascorbate, influence of the administration of, on ribosomal patterns and the biosynthesis of collagen in healing wounds of scorbatic guinea pigs (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651
1-Asparaginase, distribution of 1-asparaginase synthetase and, in the principal organs of various mammalian and avian species (Milman, H. A. & Cooney, D. A.) 27–35
1-Asparaginase synthetase, distribution of 1-asparaginase and, in the principal organs of various mammalian and avian species (Milman, H. A. & Cooney, D. A.) 27–35
Aspartate, use of compartmental analysis of isotopic data for estimation of the rates of formation of glutamate, glutamine and, from glucose and ketone bodies in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Atebrin, reconstitution of functional respiratory chains in membranes from electron-transport-deficient mutants of *Escherichia coli* as demonstrated by quenching of the fluorescence of (Haddock, B. A. & Downie, J. A.) 703–706
Bean, mung (*Phaseolus aureus*), role of cyclitol glucosides in the biosynthesis of a glucan from uridine diphasosphate glucose in seedlings of (Kemp, J. & Loughman, B. C.) 153–159
Beet (*Beta vulgaris*) leaves, biosynthesis of polypropenyltoluquinins from homogentisate and polypropenyl pyrophosphates by chloroplast-rich particulate fractions from *Euglena gracilis* and (Thomas, G. & Threlfall, D. R.) 437–440
Beta vulgaris, see Beet
Bilirubin, role of human skin in the photodecomposition of (Kapoor, C. L., Krishna Murti, C. R. & Bajpai, P. C.) 567–573
Blood, rat, effects of the infusion of sodium dichloroacetate on the concentrations of metabolites in, in the starved animal (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286
Blowfly (*Calliphora sp.*), changes in the concentrations of adenine nucleotides in flight-muscle mitochondria from (Danks, S. M. & Chappell, J. B.) 353–358
Blowfly (*Phormia regina*), steady-state concentrations of coenzyme A, acetyl-coenzyme A and 3-carboxypropionyl-coenzyme A in flight muscle and isolated mitochondria from, and the control of tricarboxylic acid-cyle oxidation (Hansford, R. G.) 509–519
Brain cortex, ox, inhibition by free and membrane-bound calcium ions of the intrinsic activity of adenosine 3':5'-cyclic monophosphate-stimulated protein kinase in fragments of synaptic membrane from (Weller, M. & Rodnight, R.) 605–609
Brain cortex, rat, contribution by the intraterminal mitochondria to the biosynthesis of protein by synaptosomes from (Hernández, A. G.) 7–17
Brain, rat and sheep, production and utilization of acetate in, and other tissues (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Brain, rat, comparison of the activities of 3-oxo acid coenzyme A-transferase in, and other tissues (Fenselau, A. & Wallis, K.) 619–627
Brain, rat, developing, turnover of myelin proteins and other structural proteins in (Sabri, M. I., Bone, A. H. & Davison, A. N.) 499–507
Brain, rat, developing, use of compartmental analysis of isotopic data for estimation of the rates of utilization of glucose and ketone bodies in (Cremer, J. E. & Heath, D. F.) 527–544
Brain, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other tissues in vivo (Fern, E. B. & Garlick, P. J.) 413–419
Brush border, kidney-cortex, rabbit, rapid method for the preparation of microvilli from (Booth, A. G. & Kenny, A. J.) 575–581
INDEX OF SUBJECTS

Vol. 142

Cell proliferation, effects of 5α-dihydrotestosterone on the kinetics of, in regenerating rat prostate gland (Lesser, B. & Bruchovsky, N.) 483-489

Cells, adrenal-gland, rat, dispersed, effects of potassium ions, 5-hydroxytryptamine, adrenocorticotropic and angiotensin II on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of (Albanò, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391-400

Cells, adrenal-gland, rat, isolated, measurement of the dynamic interactions with stimulation and inhibition of steroidsogenesis in, by using column perfusion (Lowry, P. J. & McMartin, C.) 287-294

Cells, fibroblast, WI 38, human, effects of prostaglandin E1 and 8-methylthioadenosine 3':5'-cyclic monophosphate on the growth and division of (Kurtz, M. J., Polgar, P., Taylor, L. & Rutenburg, A. M.) 339-344

Cells, HeLa, topology of the 45S precursor involved in the biosynthesis of ribosomal RNA in nuclei isolated from (Hadjilov, A. A. & Milchev, G. I.) 263-272

Cells, liver, rat, isolated, effect of lysis on gluconeogenesis from lactate in (Cornell, N. W., Lund, P. & Krebs, H. A.) 327-337

Cerebral cortex, ox, inhibition by free and membrane-bound calcium ions of the intrinsic activity of adenosine 3':5'-cyclic monophosphate-stimulated protein kinase in fragments of synaptic membrane from (Weller, M. & Rodnight, R.) 605-609

Cerebral cortex, rat, contribution by the intraterminal mitochondria to the biosynthesis of protein by synaptosomes from (Hernández, A. G.) 7-17

α-(p-Chlorophenoxy)isobutyrate, sodium, mode of inhibition by, of energy transduction by rat liver mitochondria (Panini, S. R. & Ramakrishna Kurup, C. K.) 253-261

Chloroplasts, biosynthesis of polypropylthioloquinols from homogentisate and polypropyl pyrophosphates by particulate fractions rich in, from Euglena gracilis and sugar-beet leaves (Thomas, G. & Threlfall, D. R.) 437-440

Chloroplasts, pea-leaf, differential scattering of circularly polarized light by, and evaluation of their true circular dichroism (Gregory, R. P. F. & Raps, S.) 193-201

Chloroplasts, pea-leaf, isolated, inhibition and uncoupling by organotin, organomercury and diphenylethiodioxane compounds of photophosphorylation in (Watling-Payne, A. S. & Selwyn, M.) 65-74

Cholecalciferol, metabolism of biologically active analogues of, in the chick and the rat (Lawson, D. E. M. & Bell, P. A.) 37-46

5,6-trans-Cholecalciferol, metabolism of dihydrotachysterol and, in the chick and the rat (Lawson, D. E. M. & Bell, P. A.) 37-46

Cholesterol, biosynthesis of, and other sterols in the sarcinarch Echinus esculentus (Smith, A. G. & Goad, L.) 421-427

Cholesterol, effects of 2,4-dichlorophenoxyacetate and 2,4,5-trichlorophenoxyacetate on the biosynthesis of fatty acids and, in rat liver homogenates (Olson, R. J., Trumble, T. E. & Gamble, W.) 445-448

Cholesterol, mechanism of the inhibition by, of the biosynthesis of tetrahymanol in Tetrahymena pyriformis (Beedle, A. S., Munday, K. A. & Wilton, D. C.) 57-64

Choline, effects of the injection of methionine on the concentrations of, and other constituents in the liver
of vitamin B_{12}-deficient sheep (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105-117
Chromaffin granules, adrenal-gland-medulla, ox, binding of calcium ions to the surface of (Dean, P. M. & Matthews, E. K.) 637-640
Citrate, role of long-chain fatty acyl-coenzyme A thioesters and, in the hormonal regulation of the activity of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue (Halestrap, A. P. & Denton, R. M.) 365-377
Citric acid cycle, see Tricarboxylic acid cycle
Citrulline, adaptive changes in the capacity of systems used for the biosynthesis of, in rat liver mitochondria in response to high-protein and low-protein diets (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359-364
Coenzyme A, steady-state concentrations of acetyl-coenzyme A, 3-carboxypropionyl-coenzyme A and, in blowfly flight muscle and isolated mitochondria and the control of tricarboxylic acid cycle oxidations (Hansford, R. G.) 509-519
Collagen, influence of the administration of ascorbate on ribosomal patterns and the biosynthesis of, in healing wounds of scurbutic guinea pigs (Harwood, R., Grant, M. E. & Jackson, D. S.) 641-651
Corticotrophin, see Adrenocorticotrophin
Cyclic adenosine 3':5'-monophosphate, see Adenosine 3':5'-cyclic monophosphate
Cyclic guanosine 3':5'-monophosphate, see Guanosine 3':5'-cyclic monophosphate
Cyclitol glucosides, role of, in the biosynthesis of a glucan from uridine diphosphate glucose in mung-bean seedlings (Kemp, J. & Loughman, B. C.) 153-159
Cytochrome c oxidase, effect of energization on the apparent Michaelis–Menten constant for, in respiration by rat liver mitochondria (Petersen, L. C., Nicholls, P. & Degen, H.) 247-252
Cytosol fraction, lymphocyte, pig, breakdown of phosphatidylinositol catalysed by, at pH 5.5 and pH 7.0 (Allan, D. & Michell, R. H.) 591-597
Cytosol fraction, lymphocyte, pig, requirement for calcium ions at a low concentration in the breakdown of phosphatidylinositol catalysed by (Allan, D. & Michell, R. H.) 599-604

DDT, see 1,1,1-Trichloro-2,2-bis-(p-chlorophenyl)ethane
Deoxyribonucleic acid, effects of 5α-dihydrotestosterone on the biosynthesis of, and the kinetics of cell proliferation in regenerating rat prostate gland (Lesser, B. & Bruchovsky, N.) 483-489
Deoxyribonucleic acid, inhibition by lomofungin of the biosynthesis of ribonucleic acid and, in Saccharomyces cerevisiae (Cannon, M. & Jimenez, A.) 457-463
Deoxyribonucleic acid, relationship between changes in the activity of thymidine kinase and the biosynthesis of, in rat heart muscle during embryonic and postnatal development (Gillette, P. C. & Claycomb, W. C.) 685-690
Development, embryonic and postnatal, changes in the activity of thymidine kinase in rat heart muscle during (Gillette, P. C. & Claycomb, W. C.) 685-690
Development, neonatal, pathways of gluconeogenesis from L-serine in rat liver during (Snell, K.) 433-436
Development, postnatal, turnover of myelin proteins and other structural proteins in rat brain during (Sabi, M. I., Bone, A. H. & Davison, A. N.) 499-507
Development, postnatal, use of compartmental analysis of isotopic data for estimation of the rates of utilization of glucose and ketone bodies in rat brain during (Cremer, J. E. & Heath, D. F.) 527-544
Diabetes, evaluation of the tissue distribution and excretion of radioactivity after the administration of specifically 14C-labelled streptozotocin to the rat with reference to the induction of (Karunanayake, E. H., Hearse, D. J. & Mellows, G.) 673-683
Dibucaine, effects of, and other local anaesthetics on hormone-stimulated lipolysis and on the concentration of adenosine 3':5'-cyclic monophosphate in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 345-351
6-N,2'-O-Dibutyryladenosine 3':5'-cyclic monophosphate, stimulation by, and glucocorticoids of the activity of phosphoenolpyruvate carboxykinase in isolated perfused rat liver (Huttner, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691-693
Dicarboxylate anion carrier, possible involvement of, in the transport of inorganic sulphate and sulphite by rat liver mitochondria (Crompton, M., Palmieri, F., Capano, M. & Quagliariello, E.) 127-137
Dichloroacetate, sodium, metabolic effects of the infusion of, in the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279-286
2,4-Dichlorophenoxyacetic acid, effects of 2,4,5-trichlorophenoxyacetic acid and, on the biosynthesis of cholesterol and fatty acids in rat liver homogenates (Olson, R. J., Trumble, T. E. & Gamble, W.) 445-448
Dictyostelium discoideum A.T.C.C. 24397, control of the biosynthesis of saccharides during differentiation of myxamoebae of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 317-325
Dictyostelium discoideum A.T.C.C. 24397, metabolism of macromolecules during differentiation of myxamoebae of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 301-315
Diet, adaptive changes in the capacity of systems used for the biosynthesis of citrulline in rat liver mitochondria in response to differences in the protein content of (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359-364
Diet, concentration of elongation factor 2 for protein synthesis in rat skeletal muscle during depletion of protein in, and subsequent re-feeding (Alexis, S. D., Young, V. R. & Gill, D. M.) 185-188
Dihydropteridine reductase, liver, rat, role of, in the regulation by glucagon of the metabolism of phenylalanine (Brand, L. M. & Harper, A. E.) 231-245
Dihydrotachysterol, metabolism of 5,6-trans-cholecalciferol and, in the chick and the rat (Lawson, D. E. M. & Bell, P. A.) 37-46
5α-Dihydrotestosterone (17β-hydroxy-5α-androstan-3-one), effect of duration of the period after castration on the response of the rat ventral prostate gland to the administration of (Lesser, B. & Bruchovsky, N.) 429-431
5α-Dihydrotestosterone (17β-hydroxy-5α-androstan-3-one), effects of, on the kinetics of cell prolifera-tion
INDEX OF SUBJECTS

Echinus esculentus, see Sea-urchin
Electron transport, reconstitution of functional respiratory chains in membranes from mutants of Escherichia coli deficient in, as demonstrated by quenching of aetribin fluorescence (Haddock, B. A. & Downie, J. A.) 703–706
Elongation factor 2, concentration of, for protein biosynthesis in rat skeletal muscle during protein depletion and re-feeding (Alexis, S. D., Young, V. R. & Gill, D. M.) 185–188
Endoplasmic reticulum, see Reticulum, endoplasmic
Energy transduction, mode of inhibition by sodium \(\kappa\)-(\(\kappa\)-chlorophenoxyl)isobutyrate of, by rat liver mitochondria (Panini, S. R. & Ramakrishna Kurup, C. K.) 253–261
Epididymis, rat, effects of local anaesthetics on hormone-stimulated lipolysis and on the concentration of adenosine 3':5'-cyclic monophosphate in fat-cells isolated from (Siddle, K. & Hales, C. N.) 345–351
Epididymis, rat, relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the anti-lipolytic action of insulin in fat-cells isolated from (Siddle, K. & Hales, C. N.) 97–103
Epididymis, rat, role of long-chain fatty acyl-coenzyme A thioesters and citrate in the hormonal regulation of the activity of acetyl-coenzyme A carboxylase in adipose tissue of (Halestrap, A. P. & Denton, R. M.) 365–377
Erythrocytes, human, influences of extracellular pH, intracellular adenosine triphosphate and efflux of univalent cations on the influx of calcium ions into, during cold storage (Mouat, B. & Long, C.) 629–636
Erythrocytes, pig, transport of calcium ions by membrane vesicles prepared from (Buckley, J. T.) 521–526
Escherichia coli, effects of ricin on the biosynthesis of protein by rat liver mitochondria and nuclei and by ribosomes from (Greco, M., Montanaro, L., Novello, F., Saccone, C., Sperti, S. & Stirpe, F.) 695–697
Escherichia coli, reconstitution of functional respiratory chains in membranes from electron-transport-deficient mutants of, as demonstrated by quenching of aetribin fluorescence (Haddock, B. A. & Downie, J. A.) 703–706
Estradiol, see Oestradiol
Ethanedioxybis(ethylamine)tetra-acetate, use of, as a topological tool in a study of the binding of calcium ions by rat liver mitochondria (Reed, K. C. & Bygrave, F. L.) 555–566
Ethanol, reversal by lysine of the inhibition by, of gluconeogenesis from lactate in isolated rat liver cells (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337

Euglena gracilis, biosynthesis of polyprenylloquinols from homogenates and polyprenyl phosphates by chloroplast-rich particulate fractions from sugar-beet leaves and (Thomas, G. & Threlfall, D. R.) 437–440

Fat-cells, epididymal, rat, isolated, effects of local anaesthetics on hormone-stimulated lipolysis and on the concentration of adenosine 3':5'-cyclic monophosphate in (Siddle, K. & Hales, C. N.) 345–351
Fat-cells, epididymal, rat, isolated, relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the anti-lipolytic action of insulin in (Siddle, K. & Hales, C. N.) 97–103
Fat-cells, perirenal-adipose-tissue, rabbit, isolated, lipogenesis in (Saggerson, E. D.) 477–482
Fatty acids, biosynthesis of, in isolated rabbit perirenal-adipose-tissue fat-cells (Saggerson, E. D.) 477–482
Fatty acids, biosynthesis of, in perfused mouse liver (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Fatty acids, effects of 2,4-dichlorophenoxyacetate and 2,4,5-trichlorophenoxyacetate on the biosynthesis of cholesterol and, in rat liver homogenates (Olson, R. J., Trumble, T. E. & Gamble, W.) 445–448
Fatty acyl (long-chain)-coenzyme A thioesters, role of citrate and, in the hormonal regulation of the activity of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue (Halestrap, A. P. & Denton, R. M.) 365–377
 Fibroblast cells, WI 38, human, effects of prostaglandin E2 and 8-methylthioadenosine 3':5'-cyclic monophosphate on the growth and division of (Kurtz, M. J., Polgar, P., Taylor, L. & Rutenburg, A. M.) 339–344
Flight muscle, see Muscle, flight

 Folates, effects of the injection of methionine on the concentrations of liver constituents association with the metabolism of, in vitamin B12-deficient sheep (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117
Folates, effects of the injection of methionine on the transport of methotrexate and the activities of enzymes associated with the metabolism of, in liver of vitamin B12-deficient sheep (Gawthorne, J. M. & Smith, R. M.) 119–126

D-Galactosamine, cumulative inhibition by, of the secretion of proteins and glycoproteins by the Golgi apparatus of rat liver (Bauer, C. H., Lukaschek, R. & Reutter, W. G.) 221–230
Germination, development of the activities of ribonuclease and acid phosphatase during, of pea seeds (Barker, G. R., Bray, C. M. & Walter, T. J.) 211–219
Glucagon, effects of the administration of, on the metabolism of phenylalanine in the rat (Brand, L. M. & Harper, A. E.) 231–245
Glucan, role of cyclitol glucosides in the biosynthesis of, from uridine diphasosphate glucose in mung-bean seedlings (Kemp, J. & Loughman, B. C.) 153–159
 Glucocorticoids, stimulation by 6-N',2'-O-dibutyrlyladenosine 3':5'-cyclic monophosphate of the activity of phosphoenolpyruvate carboxykinase in isolated perfused rat liver (Huttner, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691–693

Vol. 142
Gluconeogenesis, effect of lysine on, from lactate in isolated rat liver cells (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337
Gluconeogenesis, effects of the infusion of sodium dichloroacetate on, in the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286
Gluconeogenesis, pathways of, from L-serine in rat liver during neonatal development (Snell, K.) 433–436
Glucose, contributions of lactate and, as carbon sources in the biosynthesis of fatty acids in perfused mouse liver (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Glucose, determination of the biosynthesis, recycling and total body pool of, in rats and rabbits in vivo after the administration of 3H- and 14C-labelled glucose (Katz, J., Dunn, A., Chenoweth, M. & Golden, S.) 171–183
Glucose, effect of lysine on the formation of, from lactate in isolated rat liver cells (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337
Glucose, effect of treatment with oxytetracycline on resistance to insulin and the concentration of, in the blood in the obese–hyperglycaemic mouse (Bégin-Heick, N., Bourassa, M. & Heick, H. M. C.) 465–475
Glucose, effects of the infusion of sodium dichloroacetate on the concentrations of, and other metabolites in the liver and blood of the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286
Glucose, lipogenesis from, and other substrates in isolated rat perirenal-adipose-tissue fat-cells (Saggerson, E. D.) 477–482
Glucose, pathways of the formation of, from L-serine in rat liver during neonatal development (Snell, K.) 433–436
Glucose, theoretical evaluation of the turnover, total body pool and recycling of, and other compounds from specific-radioactivity curves obtained after the injection of radioactively labelled reversible and irreversible tracers (Katz, J., Rostami, H. & Dunn, A.) 161–170
Glucose, use of compartmental analysis of isotopic data for estimation of the rates of utilization of ketone bodies and, in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Glucosides, comparison of the activities of rabbit and mouse liver preparations in the formation of (Labow, R. S. & Layne, D. S.) 75–78
Glucosyltransferases, comparison of the activities of, in rabbit and mouse liver preparations (Labow, R. S. & Layne, D. S.) 75–78
β-Glucuronidase, androgen-stimulated increase in the activity of, in mouse kidney Golgi apparatus after the administration of gonadotrophin (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497
Glutamate, adaptive changes in the system for the transport of, in rat liver mitochondria in response to high-protein and low-protein diets (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359–364
Glutamate, use of compartmental analysis of isotopic data for estimation of the rates of formation of aspartate, glutamate and, from glucose and ketone bodies in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Glutamine, use of compartmental analysis of isotopic data for estimation of the rates of formation of aspartate, glutamate and, from glucose and ketone bodies in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Glycine, free, specific radioactivities of free serine and, after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in various tissues of the rat in vivo (Fern, E. B. & Garlick, P. J.) 413–419
Glycogen, control of the biosynthesis of saccharides during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of (Hames, B. D. & Ashworth, J. M.) 317–325
Glycogen, metabolism of macromolecules during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of (Hames, B. D. & Ashworth, J. M.) 301–315
Glycogen, role of, in the biosynthesis of fatty acids in perfused mouse liver (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Glycolysis, rate and extent of, in a reconstituted mixture of skeletal-muscle glycolytic enzymes in simulated post-mortem conditions (Scopes, R. K.) 79–86
Glycosyltransferases, characterization of, in Golgi-apparatus membranes of onion stem (Powell, J. T. & Brew, K.) 203–209
Golgi apparatus, amounts and rates of export of polysaccharides found within, and other components of the membrane system of maize-root cells (Bowles, D. J. & Northcote, D. H.) 139–144
Golgi apparatus, kidney, mouse, androgen-stimulated increase in the activity of β-glucuronidase in, after the administration of gonadotrophin (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497
Golgi apparatus, onion-stem, characterization of glycosyltransferases in membranes of (Powell, J. T. & Brew, K.) 203–209
Gonadotrophin, androgen-stimulated increase in the activity of β-glucuronidase in mouse kidney Golgi apparatus after the administration of (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497
Growth hormone, increase in the concentration of adenosine 3':5'-cyclic monophosphate in and potential of the release of, by heifer anterior-pituitary-gland slices incubated in the presence of 3-isobutyl-1-methylxanthine (Schofield, J. G. & McPherson, M.) 295–300
Guanosine 3':5'-cyclic monophosphate, possible role for, in the regulation of the biosynthesis and secretion of insulin by guinea-pig pancreas islets of Langerhans (Howell, S. L. & Montague, W.) 379–384
INDEX OF SUBJECTS

717

Heart muscle, rat, changes in the activity of thymidine kinase in, during embryonic and postnatal development (Gillette, P. C. & Claycomb, W. C.) 685–690

Heart, rat and sheep, production and utilization of acetate in, and other tissues (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411

Heart, rat, comparison of the activities of 3-oxo acid coenzyme A-transferase in, and other tissues (Fenselau, A. & Wallis, K.) 619–627

Heart, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other tissues in vivo (Fern, E. B. & Threlfall, D. R.) 437–440

HeLa cells, topology of the 45S precursor involved in the biosynthesis of ribosomal ribonucleic acids in nuclei isolated from (Hadjiovol, A. A. & Milchev, G. I.) 263–272

Hepatocytes, rat, isolated, effect of lysine on gluconeogenesis from lactate in (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337

Homogenate, biosynthesis of polyprenylolouquinins from polyprenyl pyrophosphates and, by chloroplas-rich particulate fractions from *Euglena gracilis* and sugar-beet leaves (Thomas, G. & Threlfall, D. R.) 385–389

Hydrogen isotope (*H*), determination of the biosynthesis, recycling and total body pool of glucose in rats and rabbits in vivo after the administration of glucose labelled with *14C* and (Katz, J., Dunn, A., Chenoweth, M. & Golden, S.) 171–183

17β-Hydroxy-5α-androstan-3-one (5α-dihydrotestosterone), effect of duration of the period after castration on the response of the rat ventral prostate gland to the administration of (Lesser, B. & Bruchovsky, N.) 429–431

17β-Hydroxy-5α-androstan-3-one (5α-dihydrotestosterone), effects of, on the kinetics of cell proliferation in regenerating rat prostate gland (Lesser, B. & Bruchovsky, N.) 483–489

3-Hydroxybutyrate, use of compartmental analysis of isotopic data for estimation of the rates of utilization of glucose and, in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544

4-Hydroxyphenylethylamine (tyramine), effect of the oral administration of inorganic sulphate on the metabolism of, as measured by the excretion of 4-hydroxyphenethylamine O-sulphate in human urine (Smith, I. & Mitchell, P. D.) 189–191

5-Hydroxytryptamine, effects of, and other agents stimulating steroidogenesis on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat adrenal-gland zona glomerulosa and zona fasciculata cells (Alban, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400

Hyperglycaemia, effect of treatment with oxytetracycline on resistance to insulin and, in the obese–hyperglycaemic mouse (Bégin-Heick, N., Bourassa, M. & Heick, H. M. C.) 465–475

Hypocotyl tissue, lupin, phytochrome-induced biosynthesis of ribonuclease de novo in sections of (Acton, G. J. & Schofer, P.) 449–455

myo-Inositol 1:2-cyclic monophosphate, formation of, during the breakdown of phosphatidylinositol catalysed by pig lymphocyte cytosol fraction at pH 5.5 and pH 7.0 (Allan, D. & Michell, R. H.) 591–597

myo-Inositol glucosides, role of, in the biosynthesis of a glucan from uridine diphosphate glucose in mung-bean seedlings (Kemp, J. & Loughman, B. C.) 153–169

Insulin, effect of treatment with oxytetracycline on resistance to, in the obese–hyperglycaemic mouse (Bégin-Heick, N., Bourassa, M. & Heick, H. M. C.) 465–475

Insulin, mode of action of tolbutamide in stimulating the release of, by perfused rat pancreas (Bowen, V. & Lazarus, N. R.) 385–389

Insulin, possible role for guanosine 3':5'-cyclic monophosphate in the regulation of the biosynthesis and secretion of, by guinea-pig pancreas islets of Langerhans (Howell, S. L. & Montague, W.) 379–384

Insulin, relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the anti-lipolytic action of, in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 97–103

Insulin, role of long-chain fatty acyl-coenzyme A thioesters and citrate in the regulation by adenine and, of the activity of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue (Halestrap, A. P. & Denton, R. M.) 365–377

Intestine, small, guinea-pig and rat, activity of phosphodiesterase II in epithelial cells of (Flanagan, P. R. & Zbarsky, S. H.) 545–553

Intestine, small, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other tissues in vivo (Fern, E. B. & Garlick, P. J.) 413–419

Islets of Langerhans, pancreas, guinea-pig, regulation of the activity of guanylate cyclase in (Howell, S. L. & Montague, W.) 379–384

Islets of Langerhans, pancreas, rat, involvement of adenylate cyclase in the stimulation by tolbutamide of the release of insulin by (Bowen, V. & Lazarus, N. R.) 385–389

Islets of Langerhans, pancreatic, mouse, isolated, effect of starvation on the activity of phosphodiesterases and the concentration of adenosine 3':5'-cyclic monophosphate in (Capito, K. & Hedeskov, C. J.) 653–658

3-Isobutyryl-1-methylxanthine, increase in the concentration of adenosine 3':5'-cyclic monophosphate in and potentiation of the release of growth hormone from heifer anterior-pituitary-gland slices incubated in the presence of (Schofield, J. G. & McPherson, M.) 295–300

Isotopes, radioactive, theoretical evaluation of the turnover, total body pool and recycling of glucose and other compounds from specific-radioactivity curves obtained after the injection of reversible and irreversible tracers labelled with (Katz, J., Rostami, H. & Dunn, A.) 161–170

Ketone bodies, effects of the infusion of sodium dichloroacetate on the metabolism of, in the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286

Vol. 142
Ketone bodies, use of compartmental analysis of isotopic data for estimation of the rates of utilization of glucose and in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Kidney cortex, rabbit, rapid method for the preparation of microvilli from the brush border of (Booth, A. G. & Kenny, A. J.) 575–581
Kidney, mouse, androgen-stimulated increase in the activity of β-glucuronidase in the Golgi apparatus of, after the administration of gonadotrophin (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497
Kidney, rat and sheep, production and utilization of acetate in, and other tissues (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Kidney, rat, comparison of the activities of 3-oxo acid coenzyme A-transferase in, and other tissues (Fenselau, A. & Wallis, K.) 619–627
Kidney, rat, differences in the mechanisms for the regulation of the activity of nuclear nicotinamide adenine dinucleotide phosphate-dependent 3-oxo 5a-steroid reductase in rat liver, rat prostate gland and (Gustafsson, J.-A. & Pousette, A.) 273–277
Kidney, rat, progesterone-induced lysis of lysosomes from, studied by changes in light-absorbance (Badenoch-Jones, P. & Baum, H.) 1–6
Kidney, rat, role of adenosine 3':5'-cyclic monophosphate in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) on carbohydrate metabolism in, and liver (Kacew, S. & Singhal, R. L.) 145–152
Kidney, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other tissues in vivo (Fern, E. B. & Garlick, P. J.) 413–419
Lactate, contributions of glucose and, as carbon sources in the biosynthesis of fatty acids in perfused mouse liver (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Lactate, effect of lysine on gluconeogenesis from, in isolated rat liver cells (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337
Lactate, effects of the infusion of sodium dichloroacetate on the concentrations of, and other metabolites in the liver and blood of the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286
Lactate, use of compartmental analysis of isotopic data for estimation of the rate of exchange of, between blood and brain in the developing rat (Cremer, J. E. & Heath, D. F.) 527–544
Lactation, changes in the activity of the pyruvate dehydrogenase complex in rat mammary gland during pregnancy and weaning (Coore, H. G. & Field, B.) 87–95
Lactation, metabolic adaptations during the biosynthesis of lactate in rabbit mammary gland during pregnancy and (Mellenberger, R. W. & Bauman, D. E.) 659–665
Lactogenesis, metabolic adaptations during, in rabbit mammary gland during pregnancy and lactation (Mellenberger, R. W. & Bauman, D. E.) 659–665
Lactose, metabolic adaptations during the biosynthesis of, in rabbit mammary gland during pregnancy and lactation (Mellenberger, R. W. & Bauman, D. E.) 659–665

Leaves, pea, differential scattering of circularly polarized light by chloroplasts from, and evaluation of their true circular dichroism (Gregory, R. P. F. & Raps, S.) 193–201
Leaves, pea, inhibition and uncoupling by organotin, organomercury and diphenyletheniodion compounds of photophosphorylation in chloroplasts isolated from (Watling-Payne, A. S. & Selwyn, M. J.) 65–74
Leaves, sugar-beet, biosynthesis of polyphenylalcoholuolins from homogentisate and polyphenyl pyrophosphates by chloroplast-rich particulate fractions from Euglena gracilis and (Thomas, G. & Threlfall, D. R.) 437–440
Leucine, contribution by intraterminal mitochondria to the incorporation of, into protein by rat cerebral cortex synaptosomes (Hernández, A. G.) 7–17
Lipids, effects of the injection of methionine on the concentrations of, and other constituents in the liver of vitamin B12-deficient sheep (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117
Lipogenesis in isolated rabbit perirenal-adipose-tissue fat-cells (Sagerson, E. D.) 477–482
Lipogenesis in perfused mouse liver (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Lipogenesis, use of compartmental analysis of isotopic data for estimation of the rates of, from glucose and ketone bodies in developing rat brain (Cremer, J. E. & Heath, D. F.) 527–544
Lipolysis, hormone-stimulated, effects of local anaesthetics on the concentration of adenosine 3':5'-cyclic monophosphate and on, in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 345–351
Lipolysis, relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the inhibition by insulin of, in isolated rat epididymal fat-cells (Siddle, K. & Hales, C. N.) 97–103
Liver cells, rat, isolated, effect of lysine on gluconeogenesis from lactate in (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337
Liver, distribution of L-asparagine synthetase and L-asparaginase in, and other principal organs of various mammalian and avian species (Milman, H. A. & Cooney, D. A.) 27–35
Liver, mouse, perfused, biosynthesis of fatty acids in (Salmon, D. M. W., Bowen, N. L. & Hems, D. A.) 611–618
Liver, rabbit and mouse, comparison of the activities of preparations of, in the formation of glucosides (Labow, R. S. & Layne, D. S.) 75–78
Liver, rat, adaptive changes in the capacity of systems used for the biosynthesis of citrulline in mitochondria from, in response to high-protein and low-protein diets (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359–364
Liver, rat and sheep, production and utilization of acetate in, and other tissues (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Liver, rat, biosynthesis of carnitine and trimethylaminobutyrate in, and other tissues (Cox, R. A. & Hoppel, C. L.) 699–701
Liver, rat, biosynthesis of phospholipids in endoplasmic reticulum of, after the administration of phenobarbitone and 20-methylcholanthrene (Davison, S. C. & Wills, E. D.) 19–26

1974
INDEX OF SUBJECTS

Liver, rat, comparison of the activities of 3-oxo acid coenzyme A-transferase in, and other tissues (Fenselau, A. & Wallis, K.) 619–627
Liver, rat, differences in the mechanisms for the regulation of the activity of nuclear nicotinamide-adenine dinucleotide phosphate-dependent 3-oxo 5α-steroid reductase in rat kidney, rat prostate gland and (Gustafsson, J.-A. & Pousette, A.) 273–277
Liver, rat, effect of energization on the apparent Michaelis–Menten constant for oxygen in respiration by mitochondria from (Petersen, L. C., Nicholls, P. & Degr, H.) 247–252
Liver, rat, effects of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid on the biosynthesis of cholesterol and fatty acids in homogenates of (Olson, R. J., Trumble, T. E. & Gamble, W.) 445–448
Liver, rat, effects of ricin on the biosynthesis of protein by mitochondria and nuclei from, and by ribosomes from Escherichia coli (Greco, M., Montanaro, L., Novello, F., Saccone, C., Sperti, S. & Stirpe, F.) 695–697
Liver, rat, effects of the administration of glucagon on the activities of enzymes involved in the metabolism of phenylalanine in (Brand, L. M. & Harper, A. E.) 231–245
Liver, rat, effects of the infusion of sodium dichloroacetate on the concentrations of metabolites in, in the starved animal (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286
Liver, rat, mode of inhibition by sodium α-(p-chlorophenoxy)suberate of energy transduction by mitochondria from (Panini, S. R. & Ramakrishna Kurup, C. K.) 253–261
Liver, rat, pathways of gluconeogenesis from t-serine in, during neonatal development (Snell, K.) 433–436
Liver, rat, perfused, isolated, stimulation by 6-N,2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate and glucocorticoids of the activity of phosphoenolpyruvate carboxykinase in (Huttner, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691–693
Liver, rat, re-evaluation of the energy-independent binding of calcium ions by mitochondria from (Reed, K. C. & Bygrave, F. L.) 555–566
Liver, rat, role of adenosine 3′:5′-cyclic monophosphate in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)-ethane (DDT) on carbohydrate metabolism in, and kidney (Kacew, S. & Singhal, R. L.) 145–152
Liver, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other tissues in vivo (Fern, E. B. & Garlick, P. J.) 413–419
Liver, rat, transport of inorganic sulphate and sulphite by mitochondria from (Crompton, M., Palmieri, F., Capano, M. & Quagliarrielli, E.) 127–137
Liver, sheep, effects of the injection of methionine on the concentrations of constituents associated with folate metabolism in, in vitamin B12-deficient animals (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117
Liver, sheep, effects of the injection of methionine on the transport of methotrexate and the activities of enzymes associated with folate metabolism in, in vitamin B12-deficient animals (Gawthorne, J. M. & Smith, R. M.) 119–126
Lomofungin, inhibition by, of the biosynthesis of nucleic acids in Saccharomyces cerevisiae (Cannon, M. & Jimenez, A.) 457–463
Lupin (Lupinus albus), phytochrome-induced biosynthesis of ribonuclease de novo in sections of hypocotyl tissue from (Acton, G. J. & Schopfer, P.) 449–455
Lupinus albus, see Lupin
Lymphocytes, pig, breakdown of phosphatidylinositol catalysed by the cytosol fraction from, at pH 5.5 and pH 7.0 (Allan, D. & Michell, R. H.) 591–597
Lymphocytes, pig, requirement for calcium ions at a low concentration in the breakdown of phosphatidylinositol catalysed by the cytosol fraction from (Allan, D. & Michell, R. H.) 599–604
Lysine, effect of, on gluconeogenesis from lactate in isolated rat liver cells (Cornell, N. W., Lund, P. & Krebs, H. A.) 327–337
Lysosomes, kidney, rat, progesterone-induced lysis of, studied by changes in light-absorbance (Badenoch-Jones, P. & Baum, H.) 1–6
Lysosomes, mucosal, small-intestinal, guinea-pig and rat, activity of phosphodiesterase II in, and other subcellular fractions (Flanagan, P. R. & Zbarsky, S. H.) 545–553
Maize (Zea mays) roots, amounts and rates of export of polysaccharides found within the membrane system of the cells of (Bowles, D. J. & Northcote, D. H.) 139–144
Mammary gland, rabbit, metabolic adaptations during the biosynthesis of lactose in, during pregnancy and lactation (Mellenberger, R. W. & Bauman, D. E.) 659–665
Mammary gland, rat, changes in the activity of the pyruvate dehydrogenase complex in, during pregnancy, lactation and weaning (Coore, H. G. & Field, B.) 87–95
Melanin, peroxidative oxidation of tyrosine to, in the supernatant fraction of crude mouse melanoma homogenates (Patel, R. P., Okun, M. R., Edelstein, L. M. & Cariglia, N.) 441–443
Melanoma, mouse, peroxidative oxidation of tyrosine to melanin in the supernatant fraction of crude homogenates of (Patel, R. P., Okun, M. R., Edelstein, L. M. & Cariglia, N.) 441–443
Membrane, plasma, liver, rat, heterogeneous distribution of enzymes among fragments of, sedimenting with the microsomal fraction (Norris, K. A., Dobrota, M., Issa, F. S., Hinton, R. H. & Reid, E.) 667–671
Membrane, synaptic, cerebral-cortex, ox, inhibition by free and membrane-bound calcium ions of the intrinsic activity of adenosine 3′:5′-cyclic monophosphate-stimulated protein kinase in fragments of (Weller, M. & Rodnight, R.) 605–609

Vol. 142
Membrane system, amounts and rates of export of polysaccharides found within, of maize-root cells (Bowles, D. J. & Northcote, D. H.) 139–144
Membrane vesicles, erythrocyte, pig, transport of calcium ions by (Buckley, J. T.) 521–526
Membranes, Golgi-apparatus, onion-stem, characterization of glycosyltransferases in (Powell, J. T. & Brew, K.) 203–209
Membranes, reconstitution of functional respiratory chains in, from electron-transport-deficient mutants of Escherichia coli as demonstrated by quenching of aetribin fluorescence (Haddock, B. A. & Downie, J. A.) 703–706
Methionine, effects of the injection of, on the concentrations of liver constituents associated with folate metabolism in vitamin B12-deficient sheep (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117
Methionine, effects of the injection of, on the transport of methotrexate and the activities of enzymes associated with folate metabolism in liver of vitamin B12-deficient sheep (Gawthorne, J. M. & Smith, R. M.) 119–126
Methotrexate, effects of the injection of methionine on the transport of, and the activities of enzymes associated with folate metabolism in liver of vitamin B12-deficient sheep (Gawthorne, J. M. & Smith, R. M.) 119–126

20-Methylcholanthrene, biosynthesis of phospholipids in rat liver endoplasmic reticulum after the administration of (Davison, S. C. & Wills, E. D.) 19–26
8-Methylthioadenosine 3′:5′-cyclic monophosphate, effects of prostaglandin E1 and, on the growth and division of human WI 38 fibroblast cells (Kurtz, M. J., Polgar, P., Taylor, L. & Rutenburg, A. M.) 339–344
Mevalonate, biosynthesis of sterols from, in the sea-urchin Echinus esculentus (Smith, A. G. & Goad, L. J.) 421–427
Mevalonate, mechanism of the inhibition by cholesterol of the biosynthesis of tetrahymanol from, in Tetrahymana pyriformis (Beedle, A. S., Munday, K. A. & Wilton, D. C.) 57–64
Microsomal fraction, cerebral-cortex, rat, characteristics of the biosynthesis of protein by, and synaptosomes (Hernández, A. G.) 7–17
Microvilli, rapid method for the preparation of, from rabbit kidney-cortex brush border (Booth, A. G. & Kenny, A. J.) 575–581
Mitochondria, flight-muscle, blowfly, changes in the concentrations of adenine nucleotides in (Danks, S. M. & Chappell, J. B.) 353–358
Mitochondria, flight-muscle, blowfly, isolated, steady-state concentrations of coenzyme A, acetyl-coenzyme A and 3-carboxypropionyl-coenzyme A in, and the control of tricarboxylic acid-cycle oxidations (Hansford, R. G.) 509–519
Mitochondria, intraterminal, contribution by, to the biosynthesis of protein by rat cerebral-cortex synaptosomes (Hernández, A. G.) 7–17
Mitochondria, liver, rat, adaptive changes in the capacity of systems used for the biosynthesis of citrulline in, in response to high-protein and low-protein diets (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359–364
Mitochondria, liver, rat, effect of energization on the apparent Michaelis–Menten constant for oxygen in respiration by (Petersen, L. C., Nicholls, P. & Degn, H.) 247–252
Mitochondria, liver, rat, effects of ricin on the biosynthesis of protein by, and nuclei and by ribosomes from Escherichia coli (Greco, M., Montanaro, L., Novello, F., Saccone, C., Sperti, S. & Strife, F.) 695–697
Mitochondria, liver, rat, mode of inhibition by sodium α-(p-chlorophenoxy)suberate of energy transduction by (Panini, S. R. & Ramakrishna Kurup, C. K.) 253–261
Mitochondria, liver, rat, re-evaluation of the energy-independent binding of calcium ions by (Reed, K. C. & Bygrave, F. L.) 555–566
Mitochondria, liver, rat, transport of inorganic sulphate and sulphite by (Crompton, M., Palmieri, F., Capano, M. & Quagliariello, E.) 127–137
Mucosa, small-intestinal, guinea-pig and rat, activity of phosphodiesterase II in epithelial cells of (Flanagan, P. R. & Zbarsky, S. H.) 545–553
Mung bean, see Bean, mung
Muscle, flight, blowfly, changes in the concentrations of adenine nucleotides in mitochondria of (Danks, S. M. & Chappell, J. B.) 353–358
Muscle, flight, blowfly, steady-state concentrations of coenzyme A, acetyl-coenzyme A and 3-carboxypropionyl-coenzyme A in, and isolated mitochondria and the control of tricarboxylic acid-cycle oxidations (Hansford, R. G.) 509–519
Muscle, heart, rat, changes in the activity of thymidine kinase in, during embryonic and postnatal development (Gillette, P. C. & Claycombe, W. C.) 685–690
Muscle, skeletal, rat, sheep, production and utilization of acetate in, and other tissues (Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J.) 401–411
Muscle, skeletal, rat, comparison of the activities of 3-oxo acid coenzyme A-transferase in, and other tissues (Fenselau, A. & Wallis, K.) 619–627
Muscle, skeletal, rat, concentration of elongation factor 2 for protein biosynthesis in, during protein depeletion and re-feeding (Alexis, S. D., Young, V. R. & Gill, D. M.) 185–188
Muscle, skeletal, rat, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of protein in, and other issues in vivo (Fern, E. B. & Garlick, P. J.) 413–419
Muscle, skeletal, rate and extent of glycolysis in a reconstituted mixture of glycolytic enzymes from, in simulated post-mortem conditions (Scopes, R. K.) 79–86
Myelin, turnover of the proteins of, and other structural proteins in developing rat brain (Sabri, M. I., Bone, A. H. & Davison, A. N.) 499–507
Myxamoebae, Dictyostelium discoideum A.T.C.C. 24397, control of the biosynthesis of saccharides during differentiation of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 317–325
Myxamoebae, Dictyostelium discoideum A.T.C.C. 24397, metabolism of macromolecules during differentiation of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 301–315

1974
INDEX OF SUBJECTS 721

Nuclei, HeLa-cell, isolated, topology of the 45S precursor involved in the biosynthesis of ribosomal ribonucleic acids in (Hadjiolov, A. A. & Milchev, G. I.) 263–272
Nuclei, kidney, liver and prostate gland, differences in the mechanisms for the regulation of the activity of nicotinamide–adenine dinucleotide phosphate-dependent 3-oxo 5α-steroid reductase in (Gustafsson, J.-A. & Pousette, A.) 273–277
Nuclei, liver, rat, effects of ricin on the biosynthesis of protein by, and mitochondria and by ribosomes from Escherichia coli (Greco, M., Montanaro, L., Novello, F., Saccone, C., Spreti, S. & Stirpe, F.) 695–697
Nucleic acids, inhibition by lomofungin of the biosynthesis of, in Saccharomyces cerevisiae (Cannon, M. & Jimenez, A.) 457–463
Nucleotides, uniformly 14C-labelled, use of Anacystis nidulans for the preparation of (Tovey, K. C., Spiller, G. H., Oldham, K. G., Lucas, N. & Carr, N. G.) 47–56

Oestradiol-17β, comparison of the activities of rabbit and mouse liver preparations in the formation of glucosides of, and related steroids (Labow, R. S. & Layne, D. S.) 75–78
Onion (Allium cepa) stem, characterization of glycolysotransferases in Golgi-apparatus membranes of (Powell, J. T. & Brew, K.) 203–209
3-Oxo acid coenzyme A-transferase, comparison of the activities of, in various rat tissues (Fenselau, A. & Wallis, K.) 619–627
3-Oxo 5α-steroid reductase, nicotinamide–adenine dinucleotide phosphate-dependent, nuclear, differences in the mechanisms for the regulation of the activity of, in rat liver; kidney and prostate gland (Gustafsson, J.-A. & Pousette, A.) 273–277
Oxygen, effect of energization on the apparent Michaelis–Menten constant for, in respiration by rat liver mitochondria (Petersen, L. C., Nicholls, P. & Degg, H.) 247–252
Oxytetracycline, effect of treatment with, on resistance to insulin in the obese–hyperglycaemic mouse (Bégim-Heck, N., Bourassa, M. & Heick, H. M. C.) 465–475
Pancreas, distribution of L-asparaginase synthetase and L-asparaginase in, and other principal organs of various mammalian and avian species (Milman, H. A. & Cooney, D. A.) 27–35
Pancreas, guinea-pig, regulation of the activity of guanylate cyclase in islets of Langerhans of (Howell, S. L. & Montague, W.) 379–384
Pancreas, mouse, effect of starvation on the activity of phosphodiesterases and the concentration of adenosine 3’5'-cyclic monophosphate in islets of Langerhans isolated from (Capito, K. & Hedeskov, C. J.) 653–658
Pancreas, rat, accumulation of radioactive in, after the administration of specifically 14C-labelled streptozotocin (Karunanayake, E. H., Hearse, D. J. & Mellows, G.) 673–683
Pancreas, rat, perfused, mode of action of tolbutamide in stimulating the release of insulin by (Bowen, V. & Lazarus, N. R.) 385–389
Parotid gland, rat, muscarinic cholinergic stimulation of the breakdown of phosphatidylinositol in fragments of (Jones, L. M. & Michell, R. H.) 583–590
Pea (Pisum arvense) seeds, development of the activities of ribonuclease and acid phosphatase during germination of (Barker, G. R., Bray, C. M. & Walter, T. J.) 211–219
Pea (Pisum sativum) leaves, differential scattering of circularly polarized light by chloroplasts from, and evaluation of their true circular dichroism (Gregory, R. P. F. & Raps, S.) 193–201
Pea (Pisum sativum) leaves, inhibition and uncoupling by organotin, organomercury and diphenylecoidon compounds of photophosphorylation in chloroplasts isolated from (Watling-Payne, A. S. & Selwyn, M. J.) 65–74
pH, extracellular, influences of intracellular adenosine triphosphate, efflux of univalent cations and, on the influx of calcium ions into human erythrocytes during cold storage (Mouat, B. & Long, C.) 629–636
Phaeolus aureus, see Bean, mung
Phenobarbitone, biosynthesis of phospholipids in rat liver endoplasmic reticulum after the administration of (Davison, S. C. & Wills, E. D.) 19–26
Phenylalanine, effects of the administration of glucagon on the metabolism of, in the rat (Brand, L. M. & Harper, A. E.) 231–245
Phenylmercuric acetate, inhibition and uncoupling by diphenylecoidon sulphate, organotin compounds and, of photophosphorylation in isolated pea-leaf chloroplasts (Watling-Payne, A. S. & Selwyn, M. J.) 65–74
Phormia regina, see Blowfly
Phosphatase, acid, development of the activities of ribonuclease and, during germination of pea seeds (Barker, G. R., Bray, C. M. & Walter, T. J.) 211–219
Phosphatidylinositol, breakdown of, catalysed by pig lymphocyte cytosol fraction at pH5.5 and pH7.0 (Allan, D. & Michell, R. H.) 591–597
Phosphatidylinositol, muscarinic cholinergic stimulation of the breakdown of, in fragments of rat parotid salivary gland (Jones, L. M. & Michell, R. H.) 583–590
Phosphatidylinositol, requirement for calcium ions at a low concentration in the breakdown of, catalysed by pig lymphocyte cytosol fraction (Allan, D. & Michell, R. H.) 599–604
Phosphodiesterase II, activity of, in epithelial cells of guinea-pig and rat small intestine (Flanagan, P. R. & Zbarsky, S. H.) 545–553
Phosphodiesterases, effect of starvation on the activity of, and the concentration of adenosine 3’:5’-cyclic monophosphate in isolated mouse pancreatic islets of Langerhans (Capito, K. & Hedeskov, C. J.) 653–658
Phosphoenoylepyruvate carboxykinase, stimulation by 6-N2'-O-dibutyryladenosine 3’:5’-cyclic monophosphate and glucocorticoids of the activity of, in isolated perfused rat liver (Hutner, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691–693
Phospholipids, biosynthesis of, in rat liver endoplasmic reticulum after the administration of phenobarbitone and 20-methylcholanthen (Davison, S. C. & Wills, E. D.) 19–26

Vol. 142
Phosphorylation, photo-, inhibition and uncoupling by organotin, organomercuric and diphenylethiodonium compounds of, in isolated pea-leaf chloroplasts (Watling-Payne, A. S. & Selwyn, M. J.) 65–74

Photophosphorylation, inhibition and uncoupling by organotin, organomercuric and diphenylethiodonium compounds of, in isolated pea-leaf chloroplasts (Watling-Payne, A. S. & Selwyn, M. J.) 65–74

Phytochrome, induction by, of the biosynthesis of ribonucleic acid (Acton, G. J. & Schofer, P.) 449–455

Pismum arvense, see Pea

Pismum sativum, see Pea

Pituitary gland, anterior, heifer, increase in the concentration of adenosine 3':5'-cyclic monophosphate in and potentiation of the release of growth hormone from slices of, incubated in the presence of 3-isobutyl-1-methylxanthine (Schofield, J. G. & McPherson, M.) 295–300

Plasma membrane, see Membrane, plasma

Polyphosphoinositides, effects of adenosine triphosphate on the transport of calcium ions by and the concentrations of, in pig erythrocyte membrane vesicles (Buckley, J. T.) 521–526

Polypropenyl pyrophosphates, biosynthesis of polypropenyltulquinols from homogentisate and, by chloroplast-rich particulate fractions from Euglena gracilis and sugar-beet leaves (Thomas, G. & Threfall, D. R.) 437–440

Polypropenyltulquinols, biosynthesis of, from homogentisate and polypropenylypyrophosphates by chloroplast-rich particulate fractions from Euglena gracilis and sugar-beet leaves (Thomas, G. & Threfall, D. R.) 437–440

Polysaccharides, amounts and rates of export of, found within the membrane system of maize-root cells (Bowles, D. J. & Northcot, D. H.) 139–144

Polysaccharides, control of the biosynthesis of, and other saccharides during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 317–325

Potassium ions, effects of, and other agents stimulating steroidogenesis on the concentration of adenosine 3':5'-cyclic monophosphate in suspensions of dispersed rat adrenal-gland zona glomerulosa and zona fasciculata cells (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400

Pregnancy, changes in the activity of the pyruvate dehydrogenase complex in rat mammary gland during, lactation and weaning (Coore, H. G. & Field, B.) 87–95

Pregnancy, metabolic adaptations during the biosynthesis of lactose in rabbit mammary gland during, and lactation (Mellenberger, R. W. & Bauman, D. E.) 659–665

Progestosterone, induction by, of the lysis of rat kidney lysosomes studied by changes in light-absorbance (Badenoch-Jones, P. & Baum, H.) 1–6

Prostaglandin E1, effects of 8-methylthiodenosine 3':5'-cyclic monophosphate and, on the growth and division of human WI 38 fibroblast cells (Kurtz, M. J., Polgar, P., Taylor, L. & Rutenburg, A. M.) 339–344

Prostaglandin E2, increase in the concentration of adenosine 3':5'-cyclic monophosphate and potentiation of the release of growth hormone induced by, from heifer anterior-pituitary-gland slices incubated in the presence of 3-isobutyl-1-methylxanthine (Schofield, J. G. & McPherson, M.) 295–300

Prostate gland, rat, differences in the mechanisms for the regulation of the activity of nuclear nicotinamideadenine dinucleotide phosphate-dependent 3-oxo 5alpha-steroid reductase in rat liver, rat kidney and (Gustafsson, J.-A. & Pousset, A.) 273–277

Prostate gland, rat, regenerating, effects of 5alpha-dihydrotestosterone on the kinetics of cell proliferation in (Lesser, B. & Bruchovsky, N.) 483–489

Prostate gland, ventral, rat, effect of duration of the period after castration on the response of, to androgens (Lesser, B. & Bruchovsky, N.) 429–431

Protein, adaptive changes in the capacity of systems used for the biosynthesis of citrulline in rat liver mitochondria in response to differences in the content of, in the diet (McGivan, J. D., Bradford, N. M. & Chappell, J. B.) 359–364

Protein, concentration of elongation factor 2 for the biosynthesis of, in rat skeletal muscle during protein depletion and re-feeding (Alexis, S. D., Young, V. R. & Gill, D. M.) 185–188

Protein, contribution by intrateratinal mitochondria to the biosynthesis of, by rat cerebral-cortex synaptosomes (Hernández, A. G.) 7–17

Protein, effects of ricin on the biosynthesis of, by rat liver mitochondria and nuclei and by ribosomes from Escherichia coli (Greco, M., Montanaro, L., Novello, F., Saceone, C., Steri, S. & Stire, F.) 695–697

Protein kinase, adenosine 3':5'-cyclic monophosphate-stimulated, inhibition by free and membrane-bound calcium ions of the intrinsic activity of, in fragments of ox cerebral-cortex synaptic membrane (Weller, M. & Rodnight, R.) 605–609

Protein, specific radioactivities of free glycine and free serine after the infusion of [U-14C]glycine as a basis for measuring the rate of biosynthesis of, in various tissues of the rat in vivo (Fern, E. B. & Garlick, P. J.) 413–419

Proteins, metabolism of ribonucleic acids and, during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 301–315

Proteins, myelin, turnover of, and other structural proteins in developing rat brain (Sabri, M. I., Bone, A. H. & Davison, A. N.) 499–507

Protocollagen, influence of the administration of ascorbate on ribosomal patterns and the biosynthesis of, in healing wounds of scorbutic guinea pigs (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651

Pteroylpolyglutamate synthetase, effects of the injection of methionine on the activities of, and other enzymes associated with folate metabolism in liver of vitamin B12-deficient sheep (Gawthorne, J. M. & Smith, R. M.) 119–126

1974
INDEX OF SUBJECTS

Pteroylpolyglutamates, effects of the injection of methionine on the concentrations of, and other constituents associated with folate metabolism in the liver of vitamin B12-deficient sheep (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117

Pyruvate dehydrogenase complex, mammary-gland, rat, changes in the activity of, during pregnancy, lactation and weaning (Coore, H. G. & Field, B.) 87–95

Pyruvate, effects of the infusion of sodium dichloroacetate on the concentrations of, and other metabolites in the liver and blood of the starved rat (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286

Roots, maize, amounts and rates of export of polysaccharides found within the membrane system of the cells of (Bowles, D. J. & Northcote, D. H.) 139–144

Saccarharides, control of the biosynthesis of, during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 317–325

Saccharomyces cerevisiae, inhibition by lomofungin of the biosynthesis of nucleic acids in (Cannon, M. & Jimenez, A.) 457–463

Salivary gland, parotid, rat, muscarinic cholinergic stimulation of the breakdown of phosphatidylinositol in fragments of (Jones, L. M. & Michell, R. H.) 583–590

Scurvy, influence of the administration of ascorbate on ribosomal patterns and the biosynthesis of collagen in healing wounds of guinea pigs with (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651

Seedlings, mung-bean, role of cytochrome c in the biosynthesis of a glucon from uridine diphosphate glucose in (Kemp, J. & Loughman, B. C.) 153–159

Seeds, pea, development of the activities of ribonuclease and acid phophatase during germination of (Barker, G. R., Bray, C. M. & Walter, T. J.) 211–219

Serine, free, specific radioactivities and, during germination of (Hames, A. G. & Godfrey, L. J.) 421–427

Serotonin, see 5-Hydroxytryptamine

Skin, human, role of, in the photodecomposition of bilirubin (Kapoor, C. L., Krishna Murti, C. R. & Bajpai, P. C.) 567–573

Slime mould (Dictyostelium discoideum A.T.C.C. 24397), control of the biosynthesis of saccarharides during differentiation of myxamoebae of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 317–325

Slime mould (Dictyostelium discoideum A.T.C.C. 24397), metabolism of macromolecules during differentiation of myxamoebae of, containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 301–315

Small intestine, see Intestine, small

Sodium α-(p-chlorophenoxy)isobutyrate, mode of inhibition by, of energy transduction by rat liver mitochondria (Panini, S. R. & Ramakrishna Kurup, C. K.) 253–261

Somatotrophin, see Growth hormone

Starvation, effect of, on the activity of phosphodiesterases and on the concentration of adenosine 3':5' cyclic monophosphate in isolated mouse pancreatic islets of Langerhans (Capito, K. & Hedeshov, C. J.) 653–658

Starvation, metabolic effects of the infusion of sodium dichloroacetate in the rat after a 24h period of (Blackshear, P. J., Holloway, P. A. H. & Alberti, K. G. M. M.) 279–286

Red blood cells, see Erythrocytes

Respiration, effect of energization on the apparent Michaelis–Menten constant for oxygen in, by rat liver mitochondria (Petersen, L. C., Nicholls, P. & Degen, H.) 247–252

Respiratory chains, functional, reconstitution of, in membranes from electron-transport-deficient mutants of Escherichia coli as demonstrated by quenching of atherin fluorescence (Haddock, B. A. & Downie, J. A.) 703–706

Reticulum, endoplasmic, amounts and rates of export of polysaccharides found within, and other components of the membrane system of maize-root cells (Bowles, D. J. & Northcote, D. H.) 139–144

Reticulum, endoplasmic, liver, rat, biosynthesis of phospholipids after the administration of phenobarbitone and 20-methylcholanthrene (Davison, S. C. & Wills, E. D.) 19–26

Ribo nuclease, development of the activities of acid phophatase and, during germination of pea seeds (Barker, G. R., Bray, C. M. & Walter, T. J.) 211–219

Ribo nuclease, phytochrome-induced biosynthesis of, de novo in sections of lupin hypocotyl tissue (Acton, G. J. & Schopef, P.) 449–455

Ribonucleic acid, inhibition by lomofungin of the biosynthesis of deoxyribonucleic acid and, in Saccharomyces cerevisiae (Cannon, M. & Jimenez, A.) 457–463

Ribonucleic acids, metabolism of proteins and, during differentiation of myxamoebae of Dictyostelium discoideum A.T.C.C. 24397 containing different amounts of glycogen (Hames, B. D. & Ashworth, J. M.) 301–315

Ribonucleic acids, ribosomal, topology of the 45S precursor involved in the biosynthesis of, in isolated HeLa-cell nuclei (Hadjiovol, A. A. & Milchev, G. J.) 263–272

Ribosomal ribonuclease acid, see Ribonucleic acid, ribosomal

Ribosomes, Escherichia coli, effects of ricin on the biosynthesis of protein by rat liver mitochondria and nuclei and by (Greco, M., Montanaro, L., Novello, F., Saccone, C., Sperti, S. & Stirpe, F.) 695–697

Ribosomes, free and membrane-bound, influence of ascorbate on the distribution of, and on the biosynthesis of collagen in healing wounds of scurvy guinea pigs (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651

Ricin, effects of, on the biosynthesis of protein by rat liver mitochondria and nuclei and by ribosomes from Escherichia coli (Greco, M., Montanaro, L., Novello, F., Saccone, C., Sperti, S. & Stirpe, F.) 695–697

Vol. 142
Steroidogenesis, effects of stimulators of, on the concentration of adenosine 3′:5′-cyclic monophosphate in suspensions of dispersed rat adrenal-gland zona glomerulosa and zona fasciculata cells (Albano, J. D. M., Brown, B. L., Ekins, R. P., Tait, S. A. S. & Tait, J. F.) 391–400

Steroidogenesis, measurement of the dynamics of stimulation and inhibition of, in isolated rat adrenal-gland cells by using column perfusion (Lowry, P. J. & McMartin, C.) 287–294

Steroids, androgenic, effect of duration of the period after castration on the response of the rat ventral prostate gland to (Lesser, B. & Bruchovsky, N.) 429–431

Steroids, androgenic, effects of, on the kinetics of cell proliferation in regenerating rat prostate gland (Lesser, B. & Bruchovsky, N.) 483–489

Steroids, androgenic, increase in the activity of β-glucuronidase in mouse kidney Golgi apparatus stimulated by, induced by the administration of gonadotrophin (Marsh, C. A., Lin, C.-W. & Fishman, W. H.) 491–497

Steroids, comparison of the activities of rabbit and mouse liver preparations in the formation of glucosides of (Labow, R. S. & Layne, D. S.) 75–78

Steroids, glucocorticoid, stimulation by 6-N,2′-O-dibutryladenosine 3′:5′-cyclic monophosphate of the activity of phosphoenolpyruvate carboxykinase in isolated perfused rat liver (Hutten, W. B., Krone, W., Seitz, H. J. & Tarnowski, W.) 691–693

Sterols, biosynthesis of, in the sea-urchin Echinus esculentus (Smith, A. G. & Goad, L. J.) 421–427

Streptozotocin, specifically 14C-labelled, synthesis of, and the tissue distribution and excretion of radioactivity after its administration to the rat (Karunanayake, E. H., Hearse, D. J. & Mellows, G.) 673–683

Succinyl-coenzyme A, see 3-Carboxypropionyl-coenzyme A

Sulphate, inorganic, effect of the oral administration of, on the metabolism of 4-hydroxyphenethyamine (tyramine) as measured by the excretion of 4-hydroxyphenethylamine O-sulphate in human urine (Smith, I. & Mitchell, P. D.) 189–191

Sulphate, inorganic, transport of inorganic sulphite and, by rat liver mitochondria (Crompton, M., Palmieri, F., Capano, M. & Quagliariello, E.) 127–137

Sulphite, inorganic, transport of inorganic sulphate and, by rat liver mitochondria (Crompton, M., Palmieri, F., Capano, M. & Quagliariello, E.) 127–137

Supernatant fraction, see Cytosol

Synaptic membrane, cerebral-cortex, ox, inhibition by free and membrane-bound calcium ions of the intrinsic activity of adenosine 3′:5′-cyclic monophosphate-stimulated protein kinase in fragments of (Weller, M. & Rodnight, R.) 605–609

Synaptosomes, cerebral-cortex, rat, contribution by the intraterminal mitochondria to the biosynthesis of protein by (Hernández, A. G.) 7–17

Testis, rat, biosynthesis of carnitine and trimethylaminobutyrate in, and other tissues (Cox, R. A. & Hoppel, C. L.) 699–701

Tetrahymanol, mechanism of the inhibition by cholesterol of the biosynthesis of, in Tetrahymanella pyriformis (Beedle, A. S., Munday, K. A. & Wilton, D. C.) 57–64

Tetrahymanella pyriformis, mechanism of the inhibition by cholesterol of the biosynthesis of tetrahymanol in (Beedle, A. S., Munday, K. A. & Wilton, D. C.) 57–64

Thymidine kinase, changes in the activity of, in rat heart muscle during embryonic and postnatal development (Gillette, P. C. & Claycomb, W. C.) 685–690

Tolbutamide, mode of action of, in stimulating the release of insulin by perfused rat pancreas (Bowen, V. & Lazarus, N. R.) 385–389

Trialkyltin, inhibition and uncoupling by diphenylenoiodonium sulphate, phenylmercuric acetate, triphenyltin and, of photophosphorylation in isolated pea-leaf chloroplasts (Watling-Payne, A. S. & Selwyn, M. J.) 65–74

Tricarboxylic acid cycle, steady-state concentration of coenzyme A, acetyl-coenzyme A and 3-carboxypropionyl-coenzyme A in blowfly flight muscle and isolated mitochondria and the control of oxidations in (Hansford, R. G.) 509–519

1,1,1-Trichloro-2,2,2-bis-(p-chlorophenyl)ethane (DDT), role of adenosine 3′:5′-cyclic monophosphate in the action of, on carbohydrate metabolism in rat liver and kidney (Kacew, S. & Singhal, R. L.) 145–152

2,4,5-Trichlorophenoxyacetate, effects of, 2,4-dichlorophenoxyacetate and, on the biosynthesis of cholesterol and fatty acids in rat liver homogenates (Olson, R. J., Trumble, T. E. & Gamble, W.) 445–448

Trimethylaminobutyrate, biosynthesis of, and, in rat tissues (Cox, R. A. & Hoppel, C. L.) 699–701

Triphenyltin, inhibition and uncoupling by diphenylenoiodonium sulphate, phenylmercuric acetate, trialkyltin and, of photophosphorylation in isolated pea-leaf chloroplasts (Watling-Payne, A. S. & Selwyn, M. J.) 65–74

Tritium isotope (3H), determination of the biosynthesis, recycling and total body pool of glucose in rats and rabbits in vivo after the administration of glucose labelled with 14C and (Katz, J., Dunn, A., Chenoweth, M. & Golden, S.) 171–183

Tyramine (4-hydroxyphenethylamine), effect of the oral administration of inorganic sulphate on the metabolism of, as measured by the excretion of tyramine O-sulphate in human urine (Smith, I. & Mitchell, P. D.) 189–191

Tyrosine, peroxidatic oxidation of, to melanin in the supernatant fraction of crude mouse melanoma homogenates (Patek, R. P., Okun, M. R., Edelstein, L. M. & Cariglia, N.) 441–443

Uridine diphosphate galactose-α-glucosyltransferase characterization of, and other glycosyltransferases in Golgi-apparatus membranes of onion stem (Powell, J. T. & Brew, K.) 203–209

1974
INDEX OF SUBJECTS

Uridine diphosphate glucose, role of cyclitol glucosides in the biosynthesis of a glucan from, in mung-bean seedlings (Kemp, J. & Loughman, B. C.) 153–159
Urine, effect of the oral administration of inorganic sulphate on the metabolism of 4-hydroxyphenethylamine (tyramine) as measured by the excretion of 4-hydroxyphenethylamine O-sulphate in, in man (Smith, I. & Mitchell, P. D.) 189–191
Vitamin B₁₂, effects of the injection of methionine on the concentrations of liver constituents associated with folate metabolism in sheep deficient in (Smith, R. M., Osborne-White, W. S. & Gawthorne, J. M.) 105–117
Vitamin B₁₂, effects of the injection of methionine on the transport of methotrexate and the activities of enzymes associated with folate metabolism in liver of sheep deficient in (Gawthorne, J. M. & Smith, R. M.) 119–126
Vitamin C, influence of the administration of ascorbate on ribosomal patterns and the biosynthesis of collagen in healing wounds of guinea pigs deficient in (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651
Vitamin D₃, see Cholecalciferol
Weaning, changes in the activity of the pyruvate dehydrogenase complex in rat mammary gland during pregnancy, lactation and (Coore, H. G. & Field, B.) 87–95
Wounds, healing, influence of the administration of ascorbate on ribosomal patterns and the biosynthesis of collagen in, of scorbutic guinea pigs (Harwood, R., Grant, M. E. & Jackson, D. S.) 641–651
Yeast (Saccharomyces cerevisiae), inhibition by lomofungin of the biosynthesis of nucleic acids in (Cannon, M. & Jimenez, A.) 457–463
Zea mays, see Maize
Zinc ions, stabilizing effect of, against spontaneous and progesterone-induced lysis of rat kidney lysosomes (Badenoch-Jones, P. & Baum, H.) 1–6
The BIOCHEMICAL JOURNAL
Cellular Aspects

Volume 142 1974

EDITORIAL BOARD

Chairman
D. G. Walker

Deputy Chairmen
H. B. F. Dixon
K. M. Jones
J. E. Cremer
N. M. Green*

Editorial Secretary
J. D. Killip

Assistant Editorial Secretary
E. N. Maltby

J. W. Bradbeer
R. B. Cain
M. Cannon
R. M. Denton
F. M. Dickinson
R. R. Dils
J. T. Dingle
D. C. Eliwood
P. B. Garland
J. J. Holbrook
M. R. Hollaway
R. C. Hughes
J. D. Judah
A. E. Kellie
U. E. Loening
J. A. Lucy
W. I. P. Mainwaring
R. D. Marshall

P. A. Mayes
J. C. Metcalfe
A. C. T. North*
R. E. Offord
D. V. Parke
A. E. Pegg
R. N. Perham
G. K. Radda
R. Rodnight
A. P. Ryle
D. R. Stanworth
I. O. Walker
D. C. Watts
F. R. Whatley
D. H. Williamson

* Nominated by the British Biophysical Society

Overseas Advisory Panel

F. J. Ballard (Australia), S. Bergström (Sweden), B. Chance (U.S.A.), J.-P. Changeux (France), P. W. Choppin (U.S.A.), W. H. Elliott (Australia), D. Garfinkel (U.S.A.),
F. W. E. Gibson (Australia), A. A. Hadjiolov (Bulgaria), H. G. Hers (Belgium), W. D. Stein
(Israel), H. G. Wittmann (Germany), I. G. Wool (U.S.A.)

BS London: The Biochemical Society © 1974
THE BIOCHEMICAL SOCIETY, 7 WARWICK COURT, LONDON WC1R 5DP