Comparison of the Biliproteins from Two Strains of the Thermophilic Cyanophyte Synechococcus lividus

By ROBERT MacCOLL, MERCEDES R. EDWARDS, MARTHA H. MULKS and DONALD S. BERNs

Division of Laboratories and Research, New York State Department of Health, Albany, N. Y. 12201, U.S.A.

(Received 18 February 1974)

C-Phycocyanins from two thermophilic strains of Synechococcus lividus that grow within different temperature ranges have been shown to be unalike. The aggregation ability of these two C-phyocyanins in sedimentation-velocity experiments varied dramatically. Surprisingly, the aggregation properties of mesophilic C-phyocyanins were found to lie between those of the two thermophilic proteins. Under identical conditions at pH 7.0, one thermophilic protein (Sy I) was composed of 17S and larger aggregates, whereas the other (Sy III) was an almost homogeneous 6S aggregate. Mesophilic C-phyocyanins have a mixture of 6S, 11S and less stable 17S aggregates under these conditions. Amino acid analysis, absorption spectra, immunochemistry and fluorescence polarization all indicated differences in the composition and properties of the thermophilic proteins, which suggest that they have different modes of adaptation to very high temperatures. Allophycocyanins from the two strains of S. lividus were also purified and studied, but unlike the C-phyocyanins no major differences were found between them. Allophycocyanin was homogeneous at pH 6.0, with a sedimentation coefficient of 5.54S and mol wt. 1.03 × 10⁵, as determined by sedimentation-equilibrium measurements.

Synechococcus lividus grows at as high a temperature as any known photosynthetic organism (Brock, 1967). It is a blue-green alga and thus contains the protein C-phyocyanin, an accessory photosynthetic pigment. We have extended the observations of Berns & Scott (1966) on one C-phyocyanin from S. lividus and have studied the protein from a second strain, which can grow at considerably higher temperatures than the one studied initially. Unexpectedly, salient differences were found in the C-phyocyanins from these two strains: differences in their aggregation behaviour, visible-absorption spectra, immunochemistry and amino acid composition. In addition, in many experiments their characteristics were unique when compared with those of C-phyocyanins isolated from mesophilic blue-green algae which grow at moderate temperatures.

The properties of several proteins isolated from various thermophilic micro-organisms were reviewed by Singleton & Amelunxen (1973). These thermophilic proteins displayed enzymic properties substantially different from those of the same enzymes isolated from mesophilic organisms. However, no consistent molecular basis for thermophily could be discerned from the existing literature. Continued examination of the same protein from a thermophilic and a closely related mesophilic organism seemed helpful to explain these differences. By using C-phyocyanin, it is possible to emphasize the unusual protein-protein interactions that occur in vivo in the formation of phycobilisomes and that persist to some extent in extracts as smaller aggregates (6, 11, 17 and 20S). These aggregates in vitro are most probably intermediates in a complicated process leading to phycobilisome formation.

Some experiments on a second biliprotein, allo-phyocyanin, from these two strains are also reported. Much less information is available on allophyocyanin (Chapman, 1973; Lazaroff, 1973; Craig & Carr, 1968; Glazer & Cohen-Bazire, 1971; Bennett & Bogorad, 1971; Gantt & Lipshultz, 1973) than on C-phyocyanin (Chapman, 1973; Berns, 1971; Glazer et al., 1973; Kobayashi et al., 1972).

Experimental

The cultures used were strains of a unicellular cyanophyte identified as Synechococcus lividus Copeland. Strain Sy I was an isolate obtained in 1969 by M. R. Edwards from the drainway of a hot pool known as Geyserino in the lower geyser basin of Yellowstone National Park, at a local temperature of 70–72°C. Growth and ultrastructural characteristics of this extremely thermophilic organism (M. R. Edwards, unpublished work) have been found to be similar to strain OH-68-S described by Meeks & Castenholz (1971). Cells used in the present study were from cultures grown under continuous fluores-
cent light (2000–4000 lx) at 59–68°C for 2–4 weeks in a defined synthetic medium [medium D; Table 2, Castenholtz (1970)]. Portions (1 litre) of this medium in Erlenmeyer flasks were each inoculated with 20ml of a previously prepared culture and stirred manually once or twice a day; a few cultures were stirred continuously with magnetic stirrers. These cultures have not been cloned and are not axenic. An orange filamentous bacterium has been persistently present.

The second strain (Sy III) was a pure culture derived from that previously investigated in our laboratory (Berns & Scott, 1966; Edwards et al., 1968). Growth conditions were the same as indicated above, except the temperature was 49–53°C. Attempts to grow this strain above 55°C have not been successful.

C-Phycocyanin was extracted from each strain and purified in sodium phosphate buffer, I 0.1, pH 6.0, to a ratio of E_{620} (Sy III) or E_{610} (Sy I) to E_{280} above 4.5. Fractionations with (NH$_4$)$_2$SO$_4$ alone or in conjunction with sucrose density gradients and isoelectric focusing, were used in the purification. Discontinuous sucrose gradients were made from 2.0M-, 1.0M-, 0.75M- and 0.5M-sucrose in phosphate buffer and were centrifuged for 20h at 140000g and 5°C in a Beckman type 40 rotor.

Isoelectric focusing was particularly important in purifying allophycocyanin. By using a 110ml LKB Ampholine column (8101) with a sucrose gradient, a separation of 0.4pH unit was obtained between C-phycocyanin and allophycocyanin (Fig. 1), which permitted purification of the allophycocyanin. At sufficiently low concentrations, allophycocyanin focused as a closely spaced doublet which was not resolved when fractions were taken. Extinction data for the fractions were determined on a Gilford model 2400 spectrophotometer, and pH was measured on a Beckman SS-1 pH meter. The visible extinction spectrum (Cary 14 spectrophotometer) at pH 6.0 of allophycocyanin showed an E_{652}/E_{620} (Sy III) or E_{652}/E_{610} (Sy I) value of 2.1–2.2 and an E_{652}/E_{280} value of 4.0–4.4.

In general, analytical ultracentrifugation, amino acid analysis and fluorescence measurements were performed as described previously (MacColl et al., 1971a, 1973). A Hamamatsu T.V. photomultiplier tube, R446, was used in the spectrofluorimeter. Extinction spectra were measured on a Cary 14 spectrophotometer at room temperature (24°C). Immunochemical analyses were performed in 1% ion agar at pH 6.0 by the Ouchterlony (1968) double-diffusion procedure with 0.10ml of either antiserum or antigen in each well.

Fig. 1. Purification of Sy I C-phycocyanin and Sy I allophycocyanin by isoelectric focusing

For details see the text. The isoelectric points are 4.82 and 4.40 respectively. When the allophycocyanin fractions were rerun on the isoelectric-focusing column, no trace of C-phycocyanin was seen. ◦, E_{652}; ○, E_{610}; △, pH. Fractions are 30 drops each.
EXPLANATION OF PLATE 1

Ouchterlony double-diffusion experiment on Sy I C-phycocyanin and Sy III C-phycocyanin

Symbols are: A, Sy III C-phycocyanin at 1.0 mg/ml; A2, at 0.50 mg/ml; A4, at 0.25 mg/ml; A8, at 0.13 mg/ml; B, Sy I C-phycocyanin at 1.0 mg/ml; B2, at 0.50 mg/ml; B4, at 0.25 mg/ml; B8, at 0.13 mg/ml; ab 1, antiserum to Sy III C-phycocyanin. Arrow shows spur. Additional details are in text.
Concentrations were determined from the extinction coefficient at 620 nm of C-phycoerythrin from *Plectonema calothricoides*, ε_{1%} = 60, in sodium phosphate buffer, I 0.1, pH 6.0.

Results

C-Phycoerythrin from the two strains showed differences in both visible extinction spectra and immunochemical properties. At pH 6.0, I 0.1, λ_{max} was 607 nm for strain Sy I and 617 nm for strain Sy III. A difference spectrum of the two proteins at equal extinction at their respective λ_{max} values revealed the complex differences between them (Fig. 2). Ouchterlony double-diffusion tests (Plate I) revealed partial identity (spurring) against homologous antiserum.

Although the amino acid compositions of C-phycoerythrin from the two strains are similar, differences were noted (Table 1), especially in histidine and arginine. Amino acid data published on strain Sy III C-phycoerythrin by Berns & Scott (1966) were recalculated and found to be incorrect. The amino acid compositions were based on mol.wt. 30000, the weight of the 3S monomer for other C-phycoerythrins determined by sedimentation equilibrium at pH 3.9 (Kao et al., 1971), and agreed with the sum of the molecular weights of the two chains found by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis in some but not all cases (Glazer & Cohen-Bazire, 1971; Bennett & Bogorad, 1971; O’Carra & Killilea, 1971; Binder et al., 1972; Torjesen & Sletten, 1972). Partial specific volumes were calculated (Cohn & Edsall, 1943) from these data to be 0.733 and 0.734 ml/g for species Sy I and Sy III respectively.

Information on the quaternary structure of these proteins was obtained both by sedimentation-velocity studies in the analytical ultracentrifuge and by fluorescence-polarization measurements. Owing to internal energy transfer among the tetapyrrrole chromophores, an inverse relationship exists between the aggregate size of C-phycoerythrin and fluorescence polarization (Vernotte, 1971; Goedheer & Birnie, 1965). Fluorescence-polarization measurements over a range of pH values are illustrated (Fig. 3).

Sedimentation results (Figs. 4 and 5) showed that at pH 6.0 phycoerythrin from strain Sy I has a significantly distinct state of aggregation, because it has a very large amount of 17S species [compare Fig. 4(a) with Fig. 5(a)]. Phycoerythrin from strain Sy I has the same sedimentation pattern in sodium phosphate buffer, at either pH 6.0 or 7.0 (Fig. 4a). In some preparations of Sy I phycoerythrin, not only 17S species but also significant quantities of 20S aggregate were observed. Both of these aggregates can be largely eliminated by exposing the protein to Na₂CO₃ (0.010 M)–NaHCO₃ (0.090 M)–NaCl

<table>
<thead>
<tr>
<th>Content (mol/mol of C-phycoerythrin)</th>
<th>Strain Sy I</th>
<th>Strain Sy III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residues</td>
<td>Average</td>
<td>Integer</td>
</tr>
<tr>
<td>Asp + Asn</td>
<td>26.7</td>
<td>27</td>
</tr>
<tr>
<td>Thr</td>
<td>13.8</td>
<td>14</td>
</tr>
<tr>
<td>Glu + Gln</td>
<td>30.0</td>
<td>30</td>
</tr>
<tr>
<td>Pro</td>
<td>10.9</td>
<td>11</td>
</tr>
<tr>
<td>Gly</td>
<td>20.9</td>
<td>21</td>
</tr>
<tr>
<td>Ala</td>
<td>41.5</td>
<td>42</td>
</tr>
<tr>
<td>Cys</td>
<td>6.0*</td>
<td>6</td>
</tr>
<tr>
<td>Val</td>
<td>16.5</td>
<td>17</td>
</tr>
<tr>
<td>Met</td>
<td>6.0</td>
<td>6</td>
</tr>
<tr>
<td>Ile</td>
<td>15.1</td>
<td>15</td>
</tr>
<tr>
<td>Leu</td>
<td>25.6</td>
<td>26</td>
</tr>
<tr>
<td>Tyr</td>
<td>11.8</td>
<td>12</td>
</tr>
<tr>
<td>Phe</td>
<td>9.2</td>
<td>9</td>
</tr>
<tr>
<td>Lys</td>
<td>9.9</td>
<td>10</td>
</tr>
<tr>
<td>His</td>
<td>2.9</td>
<td>3</td>
</tr>
<tr>
<td>Arg</td>
<td>19.9</td>
<td>20</td>
</tr>
<tr>
<td>Ser†</td>
<td>16.6</td>
<td>17</td>
</tr>
<tr>
<td>Trp</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

* Determined as cysteic acid, by method of Spencer & Wold (1969).
† Extrapolated to zero hydrolysis time.

![Fig. 2. Difference spectrum for Sy I C-phycoerythrin in reference compartment against Sy III C-phycoerythrin in sample compartment](image_url)
(0.035M) buffer, pH 9.0, a harsh treatment for most C-phycocyanins. After this treatment for 3–4 days at 4°C, the solution was dialysed back to pH 6.0 or 7.0. The resulting solution was composed predominantly of 6S and 11S aggregates, like the Sy III phycocyanin solution. However, even in this state, where the type of aggregate is qualitatively identical with that found for Sy III phycocyanin, the distribution between the 6S and 11S boundaries is very different for the two proteins [compare Figs. 4(b) and 4(c) with Figs. 5(a) and 5(b)]. The λmax of the absorption spectra (607nm) was the same at pH 6.0, both before and after pH 9.0 treatment.

It was also observed that even after 4 days at pH 9.0, some 17S aggregates of phycocyanin Sy I survived. Experiments on C-phycocyanin from Phormidium luridum, purified by (NH₄)₂SO₄ fractionation so that 70% of its aggregates are above 11S, showed that pH 9.0 treatment converted all aggregates of 11S and larger into 6S and smaller species in less than 1 day at 4°C. Treatment of Sy I phycocyanin for the same duration at pH 9.0 resulted in a solution composed of only about one-half 6S species and the rest larger aggregates.

Sy I and Sy III allophycocyanins have at pH 6.0 λmax 653 and 652nm respectively, and a single symmetric boundary with s20,w 5.54S measured with the photoelectric scanner also at pH 6.0, I 0.1. Since the concentration of the proteins was 0.20mg/ml for this measurement, the sedimentation coefficients were essentially s20,w. Fluorescence-polarization studies at pH 6.0, I 0.1, showed P650 to be +0.055 with an s.d. of 0.013 (eight experiments) for Sy I protein and +0.063 with an s.d. of 0.008 (five experiments) for Sy III protein. These results were the same within the limits of experimental error.

Sy I allophycocyanin was studied by sedimentation equilibrium in the analytical ultracentrifuge with scanner optics and the meniscus-depletion method (Yphantis, 1964). Measurements were made on solutions in sodium phosphate buffer, I 0.1, pH 6.0, at 21740 and 19160rev./min (AN-F rotor) at 20°C and at 620, 580 and 280nm settings on the monochromator. Data obtained at both speeds and all wavelengths yielded comparable results. These results showed mol.wt. 1.03×10⁶, with s.d. 3%, and a linear plot of r² versus ln concentration. A partial specific volume of 0.738ml/g, calculated from the amino acid composition (R. MacColl, unpublished work), was used in these determinations.

Discussion

The C-phycocyanin monomer, as discussed above, is composed of single copies of two different polypeptide chains. At pH 6.0, the monomer is observed only at low concentrations (MacColl et al., 1971b),

![Fig. 3. Fluorescence-polarization (P650) measurements performed on solutions of C-phycocyanin with an extinction of 0.20 at the respective wavelength maxima](image)

For details see the text. •, Sy I C-phycocyanin; ○, Sy III C-phycocyanin.

![Fig. 4. Sedimentation-velocity results for Sy I C-phycocyanin](image)

These experiments are performed with schlieren optics at 59780rev./min in an An-D rotor at 20.0°C. (a) pH 6.0, I 0.1; an identical result was obtained at pH 7.0; (b) pH 6.0, I 0.1, after first treating the protein with sodium bicarbonate buffer, pH 9.0, for 4 days; (c) pH 7.0, 70.1, after same treatment as in (b). Each frame was taken 24 min after reaching full speed.
The aggregation property of C-phycocyanin has been examined for a number of mesophilic algae (Berns, 1971; Neufeld & Riggs, 1969; MacColl et al., 1971b; MacColl & Berns, 1973). For example, the equilibrium between the 6S and 11S aggregates under defined conditions of temperature, ionic strength, pH and added small molecules is known and appears to be reasonably constant for all algae tested. However, when the same protein is isolated from an alga that grows under an environmental extreme, the aggregation properties are modified in a manner related to the stress (Berns & Scott, 1966; Kao et al., 1973). Kao et al. (1973) demonstrated that C-phycocyanin from a halophilic alga required high NaCl concentrations to maintain a state of aggregation similar to that of ordinary C-phycocyanins.

C-Phycocyanin functions in a cell as an extrinsic membrane protein in the form of large entities called phycobilisomes (Gantt & Conti, 1966). Since assembly of these phycobilisomes is necessary in both mesophiles (Gantt & Conti, 1966; Gray et al., 1973; Kessel et al., 1973) and thermophiles (Edwards et al., 1968; Holt & Edwards, 1972; Edwards & Gantt, 1971), the aggregation properties of C-phycocyanin may provide a probe of the intrinsic stabilization forces that produce a thermophilic protein. Although the two C-phycocyanins were isolated from strains of the same alga and although both strains are thermostable, the Sy I and Sy III proteins have quite diverse properties. Any unified theory to explain the thermostability must take into account the fact that some properties varied more between the C-phycocyanins of the two Sy lividus strains than they did between the thermophilic and mesophilic C-phycocyanins. The differences between the two thermophilic proteins were small variations in amino acid composition (Table 1), only partial identity in the immunochemical analysis (Plate 1), spectroscopic variations (Fig. 2), and the clear contrast in the relative stability of the aggregates (Figs. 3–5).

The amino acid compositions of Sy I and Sy III C-phycocyanins have in common a higher content of glutamic acid plus glutamine than do certain of the mesophiles (Table 2). Enolase from two thermophilic bacteria has also been shown by Barnes & Stellwagen (1973) to contain more glutamic acid than enolases from mesophilic sources and, as with Sy I and Sy III C-phycocyanins, no increase in

<table>
<thead>
<tr>
<th>Residues</th>
<th>Synechococcus lividus</th>
<th>Plectonema calothricoides</th>
<th>Lyngbya sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp+Asn</td>
<td>27</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Glu+Gln</td>
<td>30</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>His</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Arg</td>
<td>20</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Hydroxylic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>14</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Ser</td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Aliphatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>21</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Ala</td>
<td>41</td>
<td>46</td>
<td>43</td>
</tr>
<tr>
<td>Val</td>
<td>16</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Ile</td>
<td>15</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Leu</td>
<td>26</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>Pro</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Met</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Cys</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aromatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Phe</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
aspartic acid. Thermstable ferredoxin has been sequenced (Tanaka et al., 1971), and near its active site two residues differ from those in mesophilic ferredoxin: a glutamic acid residue replaces a serine and a glutamine residue replaces an alanine. In many other thermostable enzymes, however, no involvement of glutamic acid has been observed. If glutamic acid is involved in conferring thermostability in these specific cases, its role is most likely its ability to participate in ionic interactions, but aspartic acid might be equally useful if this were the exclusive role. Perhaps the glutamic acid residue confers some important conformational modification on certain thermostable proteins. Generally the amino acid compositions of thermophilic and mesophilic C-phycocyanins are similar (Table 2), as are the results for many related thermophilic versus mesophilic pairs of proteins (Singleton & Amelunxen, 1973).

The visible extinction spectra of C-phycocyanins at pH 6.0 have \(\lambda_{\text{max}} \) 615 nm and higher. The value of 607 nm for Sy I phycocyanin is thus very unusual. Even after treatment at pH 9.0, with dialysis back to pH 6.0, the maximum remains at 607 nm. This constancy shows that the unusual spectrum is not a result of the aggregation state of the protein. When the aggregation processes of the mesophilic Sy I and Sy III C-phycocyanins are compared, the complexity of the situation is seen. The percentage of 6S C-phycocyanin varies with source at pH 6.0 and 7.0, 10.1, 20°C, as follows: Sy I < mesophilic < Sy III. This analysis applies to solutions where 11S is the only other major component; the Sy I protein is first treated at pH 9.0. In short, both Sy I and Sy III C-phycocyanins are atypical, but they vary in the opposite directions from the mesophilic.

Berns & Scott (1966) showed that whereas at 25°C the Sy III C-phycocyanin has more 6S aggregate than that from a mesophilic source, at 50°C the Sy III protein assembles to a state similar to the mesophilic one at 25°C. Their investigations suggested that Sy III protein requires high temperature for complete assembly. This was not found with Sy I protein. In contrast, the thermodynamic stability of 11S aggregate compared with the 6S at pH 6.0, and especially at pH 7.0, is greater than that observed for mesophiles even at 20°C (Fig. 4; MacColl et al., 1971b). In addition, the resistance of the 17S aggregate for disaggregation is greater than that found for the mesophilic protein. At pH 9.0, all aggregates larger than 6S are destroyed for C-phycocyanin from P. luridum, whereas under identical conditions (1 day; 4°C) 50% of such aggregates for Sy I C-phycocyanin are retained. Again, in contrast, Sy III C-phycocyanin possessed very little 17S aggregate even at pH 6.0 without being subjected to a pH 9.0 buffer (Fig. 5a).

Fluorescence-polarization experiments (Fig. 3) showed a distinction in aggregate distribution for Sy I protein versus Sy III even at low concentrations (0.03 mg/ml) and over a range of pH values. Both Sy I and Sy III C-phycocyanins exhibited an increase in polarization at pH 3.9. At this pH the 3S monomer is favoured (Kao et al., 1971; Neufeld & Riggs, 1969; MacColl & Berns, 1973), but some 11S aggregate is undoubtedly still present in Sy I protein. The wavelength-dependence of the fluorescence polarization for Sy I and Sy III C-phycocyanin in the 560–640 nm region was similar to that observed for other C-phycocyanins (Vernotte, 1971; Teale & Dale, 1970).

The adaptation of C-phycocyanin to high temperature in strain Sy I then is due to the increased relative stability of the larger aggregated forms (11S and greater), in contrast with strain Sy III, where adaptation involves a major temperature-dependence of the aggregation. This augmented stabilization in strain Sy I could allow the forms in vivo to continue functioning even at elevated temperatures which denature ordinary proteins. These data suggest that there are at least two alternative conditions for thermophily: (1) high temperature to produce the needed functionality in the protein (a 'thermo-activated' protein); (2) an increase in protein stability, either kinetic or thermodynamic, that discourages thermal denaturation (a 'thermo-resistant' protein).

Both sedimentation-velocity and equilibrium data suggest that, unlike C-phycocyanin, allophycocyanin is a single homogeneous entity at pH 6.0 and low concentration. The homogeneity is indicated by the linear plots of \(r^2 \) versus In concentration of the equilibrium experiments. The similar molecular weights at both the 620–580 nm and 280 nm wavelengths where many biopolymers absorb also suggest that the preparations are pure. The size of the allophycocyanin was 1.03 × 10^5 daltons. Sodium dodecyl sulphate–polyacrylamide-gel electrophoresis has shown that allophycocyanin from mesophilic organisms is composed of chains of 1.6 × 10^4–1.7 × 10^4 daltons (Bennett & Bogorad, 1971; Rice & Briggs, 1973). These results together indicate that the protein is a hexamer. The diffusion coefficient, calculated from the Svedberg equation, was 5.08 × 10^{-7} cm^2 s^{-1}. The frictional ratio, \(f_f/\min \), is thus 1.35 (Tanford, 1961). Thus the physical properties of allophycocyanin are very different from those of C-phycocyanin. The functions of allophycocyanin and its relationship to C-phycocyanin are still not substantiated. Lazaroff (1973) has made the interesting proposal that allophycocyanin may be involved in photomorphogenesis.

We thank Mrs. Inge Panko for her excellent technical assistance. This work was supported in part by grants from the National Science Foundation (GB24315) and from the National Institutes of Health (A108119).
References