APPENDIX

Analysis of the Catalase–Hydrogen Peroxide Intermediates in Coupled Oxidations

By BRITTON CHANCE and NOZOMU OSHINO

Johnson Research Foundation, University of Pennsylvania,
Philadelphia, Pa. 19104, U.S.A.

(Received 13 September 1972)

In previous communications, we considered the kinetics of the catalase–H$_2$O$_2$ intermediate in coupled oxidations of the isolated liver catalase (Chance, 1949) and of the mixed mitochondrial–peroxisomal fraction (Chance & Oshino, 1971). In those cases, it was possible to record the kinetics of formation of the intermediate by H$_2$O$_2$ pulses, and solve for the H$_2$O$_2$ concentration. In most of the cases, however, only the analysis of steady-state effects are feasible and will be useful for the further study on the catalase reaction, especially in a system such as the perfused liver. It seems appropriate, therefore, to extend the analysis. The chemical equations for the catalase reactions are:

\[
\text{Cat} + \text{H}_2\text{O}_2 \overset{k_1}{\underset{k_2}{\rightarrow}} \text{Cat–H}_2\text{O}_2
\]

\[
\text{Cat–H}_2\text{O}_2 + \text{C}_2\text{H}_4\text{OH} \overset{k_3}{\rightarrow} \text{Cat} + \text{H}_2\text{O} + \text{CH}_3\text{CHO}
\]

\[
\text{Cat–H}_2\text{O}_2 + \text{H}_2\text{O}_2 \overset{k_4}{\rightarrow} \text{Cat} + \text{O}_2 + 2\text{H}_2\text{O}
\]

Symbols* in parentheses represent the concentrations of corresponding molecular species. In the following analysis the designations of rate constants and the symbols for molecular species do not conform with current practice but instead retain the nomenclature originally used, to avoid confusion and to simplify a comparison of these equations with those previously derived (Chance, 1949; Chance et al., 1952).

The three differential equations for catalase action (Chance et al., 1952) are modified by inserting into eqn. (2) the rate of generation of H$_2$O$_2$, dx_{m}/dt:

\[
\frac{dp}{dt} = k_1 x(e-p) - k'_4 xp - (k_2 + k_4 a_0)p
\]

(1)

\[
\frac{dx}{dt} = \frac{dx_{m}}{dt} - k_1 x(e-p) - k'_4 xp + k_2 p
\]

(2)

\[
\frac{da}{dt} = -k_4 a_0
\]

(3)

The equations are solved for the steady state of the catalase intermediate (\(\frac{dp}{dt} = 0 \)), for the steady state of H$_2$O$_2$ generation (\(\frac{dx}{dt} = 0 \)) and for the particular case where \(k_2 \), the rate of dissociation of H$_2$O$_2$ from catalase intermediate, is negligible. The initial concentration of the hydrogen donor is \(a_0 \). The equations were also studied by Clayton (1959) and a graphic solution representing the various parameters was presented. Summing eqns. (1) and (2), and noting that when \(\frac{dx_{m}}{dt} = 0 \), \(x = x_m \) and \(p = p_m \), the steady-state concentration of the intermediate (as distinguished from \(p_m \), the maximum concentration of the intermediate), gives eqn. (4a):

\[
\frac{dx_{m}}{dt} = 2k'_4 x_mp_m + k_4 a_0 p_m
\]

(4a)

The steady-state solution for \(p_m/e \) is derived from a solution of eqn. (1), giving eqn. (5a):

\[
p_m = \frac{1}{1 + \frac{k_4}{k_1} \frac{p_m}{x_m}}
\]

(5a)

In general terms, \(k'_4 = nk_1 \), and eqn. (4a) becomes:

\[
\frac{dx_{m}}{dt} = 2nk_1 x_mp_m + k_4 a_0 p_m
\]

(4b)
Similarly, eqn. (5a) becomes:

$$p_m = \frac{1}{e^{1+n \frac{k_A a_0}{k_1 x_m}}}$$ \hspace{1cm} (5b)

A general equation for $\frac{dx_m}{dt}$ can be obtained by substituting eqn. (5b) into eqn. (4b) and eliminating x_m.

From eqn. (5b):

$$x_m = \frac{k_A a_0}{k_1 p_m \left[e^{-\frac{(n+1)p_m}{p_m}} \right]}$$ \hspace{1cm} (5c)

then, from eqn. (4b) by substituting for x_m and rearranging:

$$\frac{dx_n}{dt} = k_A a_0 p_m \left[1 + 2n \left(\frac{1}{e^{\frac{1}{p_m} - \frac{(n+1)p_m}{p_m}}} \right) \right]$$ \hspace{1cm} (4c)

This equation generally relates the rate of H$_2$O$_2$ generation to the rate of the 'peroxidatic' reaction.

When, from eqn. (3), $-\frac{da}{dt}$ is substituted for $k_A a_0 p_m$:

$$\frac{dx_n}{dt} = \frac{-\frac{da}{dt}}{1 + 2n \left(\frac{1}{e^{\frac{1}{p_m} - \frac{(n+1)p_m}{p_m}}} \right)}$$ \hspace{1cm} (4d)

Rearranging:

$$\frac{p_m}{e^{n+1+2n}} = \frac{1}{\left[\frac{dx_n}{dt} - \frac{-\frac{da}{dt}}{1} \right]}$$ \hspace{1cm} (4e)

Therefore the p_m/e value directly relates to the proportion of the 'peroxidatic' reaction in the overall H$_2$O$_2$-decomposition reaction. Experimentally a linear relationship is obtained and the deviation from theory (eqn. 4e) is largely set by the error of the experiments from $p_m/e = 0.02$ to 0.39 as shown in Fig. 1.

Simplified forms of eqn. (4c) are obtained if a_0 is adjusted to $a_{1/2}$, the value that brings p_m to $p_m/2$. From eqn. (5b) as $x_m \to \infty$, $p_m \to p_M$, thus:

$$p_M = \frac{1}{e^{1+n}}$$ \hspace{1cm} (5d)

At $a_0 = a_{1/2}$,$$

p_m = \frac{p_M}{2} = \frac{e}{2(1+n)}$$ \hspace{1cm} (5e)

Substituting for p_m in eqn. (4c) and simplifying:

$$\left[\frac{dx_n}{dt} \right]_{a_{1/2}} = k_A a_{1/2} p_m \left(\frac{3n+1}{n+1} \right) = k_A a_{1/2} e^{\frac{3n+1}{2(n+1)^2}}$$ \hspace{1cm} (4f)

Therefore, the p_m/e value directly relates to the proportion of the 'peroxidatic' reaction in the overall H$_2$O$_2$-decomposition reaction. Experimentally a linear relationship is obtained and the deviation from theory (eqn. 4e) is largely set by the error of the experiments from $p_m/e = 0.02$ to 0.39 as shown in Fig. 1.

Simplified forms of eqn. (4c) are obtained if a_0 is adjusted to $a_{1/2}$, the value that brings p_m to $p_m/2$. From eqn. (5b) as $x_m \to \infty$, $p_m \to p_M$, thus:

$$p_M = \frac{1}{e^{1+n}}$$ \hspace{1cm} (5d)

At $a_0 = a_{1/2}$,$$

p_m = \frac{p_M}{2} = \frac{e}{2(1+n)}$$ \hspace{1cm} (5e)

Substituting for p_m in eqn. (4c) and simplifying:

$$\left[\frac{dx_n}{dt} \right]_{a_{1/2}} = k_A a_{1/2} p_m \left(\frac{3n+1}{n+1} \right) = k_A a_{1/2} e^{\frac{3n+1}{2(n+1)^2}}$$ \hspace{1cm} (4f)

Vol. 131
Table 1. k_4 values for methanol and ethanol estimated from eqn. (4f)

The alcohol concentration producing $p_m/e = 0.2$ at various $\frac{1}{e} \frac{dx_m}{dt}$ values was determined as described for Fig. 7 in the main paper (Oshino et al., 1973b). Since $n = 1.5$ with rat liver catalase, k_4 was calculated from the equation: $\frac{1}{e} \frac{dx_m}{dt} = 0.44 k_4 a_{1/2}$. The temperatures used for methanol and ethanol experiments were 30°C and 25°C respectively. The k_4 values for methanol and ethanol, which were directly measured at room temperature, were $10^3 \text{M}^{-1} \cdot \text{s}^{-1}$ (Chance, 1949).

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>$a_{1/2}$ (M)</th>
<th>k_4 (M$^{-1} \cdot \text{s}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>0.10</td>
<td>1.5</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.50</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>1.02</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>2.40</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4.84</td>
<td>1.1</td>
</tr>
</tbody>
</table>

$\frac{dx_m}{dt} = -2.2 \frac{da}{dt} | _{1/2}$ (4j)

Eqns. (4i) and (4j) define the relationship between the rate of H$_2$O$_2$ generation and the rate of alcohol disappearance or aldehyde formation under conditions where the hydrogen donor, a_0, has been adjusted to a value of $a_{1/2}$: where the steady-state concentration of the catalase intermediate, p_m, is one-half its maximum concentration, i.e. $p_m = p_M/2$, and assuming that a steady state can be maintained, i.e. $dx/dt = 0$. The latter represents a significant constraint upon the system, and implies that there is enough catalase present to 'control' the H$_2$O$_2$ concentration and maintain it at a constant value. When this constraint is applicable, then it is apparent that the fraction of the H$_2$O$_2$ generated that is utilized in converting alcohol into aldehyde in the presence of sufficient donor to give $p_m = p_M/2$ is 45% of the total, for a catalase for which $m = 1.5$ (eqn. 4j) [cf. Fig. 3 in the main paper (Oshino et al., 1973b)]. The data further show that the fractional conversion is independent of the rate of H$_2$O$_2$ generation and of the molarity of the enzyme (Sies et al., 1973).

The steady-state H$_2$O$_2$ concentration, x_m, can further be related to the rate of alcohol disappearance or aldehyde formation by the following series of steps. Eqns. (5c) and (5e) are arranged:

$$ (n+1)k_1 x_m = k_4 a_{1/2} $$ (6)

From eqns. (3) and (5e),

$$ k_4 a_{1/2} = \frac{2(n+1) \frac{da}{e} \frac{dt}{}}{n} $$ (7)

Substituting eqn. (7) into eqn. (6):

$$ (n+1)k_1 x_m = \frac{2(n+1) \frac{da}{e} \frac{dt}{}}{n} $$ (8a)

Simplifying:

$$ \frac{da}{e} \frac{dt}{} = \frac{k_1 x_m \frac{e}{2}}{a_{1/2}} $$ (8b)

In this equation, it is observed that the rate of alcohol disappearance or aldehyde formation at a hydrogen donor concentration that causes $p_m = p_M/2$ is, first, independent of the value of n for the particular catalase. Secondly, it is constant for a wide range of x_m values and e values. In this respect, the system is self-adjusting; with low values of e, x_m will be high and vice versa. Thus we find an explanation for the insensitivity of alcohol disappearance or aldehyde formation to the washing of catalase out of microsomal fraction (Roach et al., 1969) or to the inhibition of catalase by cyanide or azide; only the balance between x_m and e values is altered.

By substituting da/dt in eqn. (4f), with its $k_4 a_{1/2} p_m$ value in eqn. (8b), we get:

$$ \left[\frac{dx_m}{dt} \right] | _{1/2} = -2.2 \left[\frac{da}{dt} \right] | _{1/2} $$ (9a)

or:

$$ 1 \frac{dx_m}{e} \frac{dt}{ | _{1/2}} = \frac{3n + 1}{n + 1} \left(\frac{k_1 x_m e}{2} \right) $$ (9b)

Thus the term $\frac{1}{e} \frac{dx_m}{dt}$ is linearly related to x_m when $a_0 = a_{1/2}$.

The agreement of the equations developed here with the experimental results on coupled oxidations gives further support to the validity of the general equations for the 'catalatic' and 'peroxidatic' reactions of catalase (Chance et al., 1952; Chance, 1969), and provides the theoretical basis for applying the steady-state analysis in the perfused liver (Sies et al., 1973; Oshino et al., 1973a).

This work was supported by Research Grant MH-20573-1 from the National Institute of Mental Health, U.S.A.

References

1973

