types were present in approximately equal proportions. On the other hand mitochondrial preparation from embryonic rat livers (−6 days) consisted predominantly of the high-density type (10:1); as development proceeded this ratio changed, until at 1 day after birth the low-density mitochondria were the predominant type.

The low-density mitochondria can be transformed into high-density mitochondria by incubating the former with succinate and P4 and subsequently placing the mixture on a sucrose gradient containing these substrates.

Similarly, if mitochondria from normal liver are isolated in the presence of succinate and P4, virtually all the mitochondria are of the high-density type. On the other hand, high-density mitochondria can be partially converted into low-density mitochondria by incubation with either antimycin or ADP.

These results show that ultrastructurally different mitochondria, reflecting different respiratory states, can be separated from one another on a density gradient; yet their membranes do not differ in density.

On investigating the total water and sucrose-inaccessible space of these two types of mitochondria it was found that the change in the total mitochondrial volume and the sucrose-inaccessible space could account for an increase in density of the ‘orthodox’ mitochondria due to the equilibration of the internal sucrose content with the high sucrose content present in the gradient.

J. K. P. is grateful to the Wellcome Foundation for a travel grant.


The Permeability of Rat Heart Mitochondria to Citrate

By P. J. England and B. H. Robinson. (Department of Biochemistry, University of Bristol)

It has been postulated that in perfused rat heart the rate of glycolysis may be controlled in some circumstances by the concentration of citrate regulating the activity of phosphofructokinase (Randle, Newsholme & Garland, 1964; Randle, Denton & England, 1968). In rat heart, phosphofructokinase is cytoplasmic, whereas citrate synthesis is intramitochondrial. Translocation of citrate across the mitochondrial membrane must therefore occur if the above hypothesis is to be tenable. Liver mitochondria are readily permeable to citrate in the presence of malate, etc., whereas heart mitochondria were shown to be impermeable to citrate under the same conditions (Chappell & Robinson, 1968). The work reported here attempted to resolve this discrepancy.

The technique used was to label the intramitochondrial citrate and isocitrate specifically, and then to follow the efflux of the label under various conditions. (In what follows the term citrate is taken to mean both citrate and isocitrate.) Citrate was initially labelled by incubating heart mitochondria with KH14CO3, rotenone and 2-oxoglutarate; this process specifically labels citrate by a reversal of isocitrate dehydrogenase and aconitase (Bowman, 1966). The mitochondria were washed, incubated at 30° for times up to 3 min. in 120 mm-KCl-20 mm-tris, pH 7.4, and rapidly spun down at 0°. The medium was assayed for [14C]citrate by liquid-scintillation counting after removal of 14CO2 either by acidification and degassing or on Dowex-1 formate resin. Control experiments showed that these separation procedures were identical, and that the remaining radioactivity was probably present in citrate only.

The results showed that there was no citrate efflux when heart mitochondria were incubated in tris-KCl alone, but the addition of malate, citrate, tartrate or aspartate to the medium caused a rapid efflux of radioactivity. Malonate, butyramalate and glutamate did not cause an efflux. Equilibration of citrate between intra- and extramitochondrial spaces was complete in 90 sec. in the presence of malate. The concentration of malate required for half-maximal rate of efflux (Kact.) was 0.2 mm; in the presence of 2 mm-P1 it was 0.1 mm. Kact. for externally added citrate was 0.5 mm.

These results show that the permeability to citrate of heart mitochondria is qualitatively similar to that of liver mitochondria, but is quantitatively very much less. The maximum citrate efflux found (10 μmoles/min./mg. of protein) is sufficient to account for the rate required in perfused heart to explain the inhibition of glycolysis by citrate reported by Randle et al. (1968).