Studies with Tryptophan Metabolites in vitro

KYNURENINE METABOLISM IN KIDNEYS OF MICE INFESTED WITH SCHISTOSOMA MANSONI

BY M. SAMIR AMER,* M. H. ABDEL-DAIM AND G. A. ABDEL-TAWAB

Department of Pharmacology, Faculty of Pharmacy and the Cancer Research Unit, Medical Research Institute, Alexandria, U.A.R.

(Received 29 April 1968)

The conversion in vitro of kynurenine into kynurenic acid and anthranilic acid in both normal kidneys and those obtained from mice infested with Schistosoma mansoni was investigated. Normal mouse kidneys seem to possess an excess of functional pyridoxal phosphate over those obtained from infested mice. Kynureninase and kynurenine transaminase in the latter kidneys are more easily inhibited by deoxyribofuranosyl phosphate and tartar emetic, indicating low stores of active pyridoxal phosphate. The possible implication of these findings in relation to the role of the kidneys in producing abnormal patterns of tryptophan metabolism and possibly contributing to the production of bladder tumours in bilharzial patients is discussed.

Previous work from this Laboratory has indicated that Schistosoma mansoni infestation produces a deficiency of active pyridoxal in the infested mouse liver (Amer, Abdel-Daim & Abdel-Tawab, 1967a). It was also shown that treatment with tartar emetic (Amer, Abdel-Daim & Abdel-Tawab, 1967b) or with other antimonials (Amer, Abdel-Daim & Abdel-Tawab, 1968) produces a similar deficiency in pyridoxal phosphate. The latter is probably due to the formation of an inactive chelate between pyridoxal phosphate and the antimony contained in these drugs instead of the active chelate of pyridoxal phosphate with the proper multivalent cation. These effects are important in the possible aetiology of bladder tumours in bilharzial patients, particularly those treated with antimony-containing drugs. Decrease in the active concentrations of pyridoxal phosphate and the consequent inhibition of the two pyridoxal phosphate-requiring enzymes kynurenine transaminase and kynureninase result in altered metabolism of tryptophan. The latter would be manifested by the increased urinary excretion of certain tryptophan metabolites (Abdel-Tawab, Kelada, Kelada, Abdel-Daim & Makhyoun, 1966; Abdul-Fadl & Khalafallah, 1961; Khalafallah & Abdul-Fadl, 1964). Since some of these metabolites are carcinogenic (Boyland & Watson, 1956; Allen, Boyland, Dukes, Horning & Watson, 1957; Bryan, Brown & Price, 1964; Bryan, Morris & Brown, 1965), the possibility of a causal relationship to the induction of bladder tumours exists (Boyland, 1963; Wallace & White, 1963; Alifano, Papa, Taucredi, Elicio & Quagliariello, 1964; Price & Brown, 1962). It was decided to study the effects of S. mansoni infestation together with the effect of antimonials on the metabolism of kynurenine by the kidney to determine whether that organ contributes to the altered rate of excretion of tryptophan metabolites in the urine. In the present study, the metabolism of kynurenine by homogenates of normal mouse kidneys and of those obtained from mice infested with S. mansoni was investigated. The results indicate that normal mouse kidneys seem to have an excess of pyridoxal phosphate, whereas there is no excess of pyridoxal phosphate in the infested mouse kidneys. Treatment with tartar emetic resulted in the inhibition of both kynureninase and kynurenine transaminase.

MATERIALS AND METHODS

Animals. Adult albino mice weighing 15–20 g. fed ad libitum on a specially prepared diet containing all the necessary factors were used. Exposure of mice to cercariae of S. mansoni was started 60 days before the experiments (Oliver & Stirewalt, 1952). The infected animals were used only after producing eggs for at least 1 week.

Materials. Kynurenine sulphate and kynurenic acid were purchased from Sigma Chemical Co. (St Louis, Mo., U.S.A.). α-Oxoglutarate was supplied by L. Light and Co. Ltd. (Colnbrook, Bucks.). Anthranilic acid was prepared in this Laboratory (m.p. 144–145°). Pyridoxal phosphate and deoxyribofuranosyl phosphate were also prepared in this
Laboratory by the method of Beiler & Martin (1947). In some experiments high-quality pyridoxal phosphate from commercial sources was used (grade A; Calbiochem, Los Angeles, Calif., U.S.A.). The results obtained with either sample of pyridoxal phosphate were statistically indistinguishable. Redistilled water from an all-glass still was used to make solutions.

Preparation of the homogenates. The mice were killed by exsanguination after being stunned by a blow on the head. The fresh kidneys were quickly removed and placed in ice-cold 0-25 m-sucrose solution. Tissue homogenates (10%, wet wt./vol.) were prepared in the sucrose solution by using a Potter–Elvehjem homogenizer.

Incubations. Reaction mixtures (final volume 4 ml.) were incubated in 25 ml. Erlenmeyer flasks shaken in a water bath kept at 37° with air as the gas phase. At the end of the incubation, 1 ml. of 10% (w/v) trichloroacetic acid was added to each flask and the mixture transferred to centrifuge tubes with 1 ml. of water. The precipitate was removed by centrifugation and the supernatants were frozen until analysed. Flasks were run in duplicate and a zero-time flask was included in each set of experiments. The concentrations of the different materials, when present in the incubation medium, unless otherwise stated, were: DL-kynurenine sulphate (5-0 μm), CaCl₂ (5 mm), MgSO₄ (1 mm), potassium phosphate buffer, pH 7-4 (0-05 M), α-oxoglutarate (30-0 μM), pyridoxal phosphate (40-0 μg.), deoxy-pyridoxal phosphate (40-0 μg.), 10% whole-kidney homogenate (2-0 ml.).

Quantitative determination of metabolites. Kynurenine, anthranilic acid and kynurenic acid were determined by the method of Miller, Tauchida & Adelberg (1953). Kynurenine and anthranilic acid were also determined by the method of Mason & Berg (1952).

RESULTS

The production of kynurenic acid and anthranilic acid from kynurenine was studied in both normal kidney homogenates and those obtained from S. mansoni-infested mice. The results are shown in Table 1. It is clear that, in the absence of any additions to the system, the kidneys obtained from infested mice metabolize kynurenine in a manner similar to that of normal mice (Expt. 1). When exogenous pyridoxal phosphate is added (Expt. 2), no appreciable effect on the metabolism of kynurenine by either kidney is produced. However, the addition of deoxypyridoxal phosphate produces significant inhibitions in the production of both kynurenic acid and anthranilic acid by the infested mouse kidney, whereas the only effect on the normal kidney is a slight inhibition of kynureninase with a decreased production of anthranilic acid (Expt. 3). Tartar emetic, in the concentration used, appears to inhibit the two enzyme systems in both kidneys. However, the inhibition is more pronounced in the infested mouse kidney. The anthranilic acid/kynurenic acid ratio indicates that, in presence of tartar emetic, kynurenine transaminase is more inhibited relative to kynureninase in the infested mouse kidney, whereas a slightly opposite situation may exist in the presence of deoxypyridoxal phosphate in the normal kidney. The inhibition of the normal kidney by tartar emetic seems to be distributed evenly between both kynureninase and kynurenine transaminase with not much change in the anthranilic acid/kynurenic acid ratio. The amount of kynurenine utilized generally reflects the amount used in the formation of 3-hydroxykynurenine and other products not assayed in the present experiments. In the experiments with the kidneys obtained from S. mansoni-infested animals in the presence of tartar emetic, considerably more kynurenine was utilized than can be accounted for by the formation of kynurenic acid and anthranilic acid. The reason for this is not known.

DISCUSSION

It is evident from the present study that the S. mansoni-infested mouse kidney metabolizes kynurenine in a manner similar to that of the normal

| Table 1. Kynurenine metabolism in normal and S. mansoni-infested mouse kidney |
|-----------------------------|-----------------------------|-----------------------------|
| Kynurenine utilized | Kynurenic acid | Anthranilic acid |
| Expt. no. | N | I | N | I |
| 1 | None | 13-4 ± 1-2 | 12-5 ± 3-2 | 2-9 ± 0-3 | 2-5 ± 0-3 |
| 2 | Pyridoxal phosphate | 15-3 ± 3-4 | 13-8 ± 2-4 | 3-2 ± 0-2 | 2-6 ± 0-3 |
| 3 | Deoxy-pyridoxal phosphate | 10-0 ± 2-0 | 9-9 ± 2-0 | 2-1 ± 0-3 | 2-7 ± 0-1 |
| 4 | Tartar emetic (3 mM) | 9-55 ± 1-16 | 14-7 ± 2-0 | 7-0 ± 0-8 | 5-0 ± 0-6 |

 dignified.
kidney. However, the normal kidney seems to possess excess of pyridoxal phosphate, which is not the case in the infested mouse kidney. The latter seems to have just enough pyridoxal phosphate to saturate both its enzyme systems. Additional pyridoxal phosphate does not affect the amounts of kynurenic acid or anthranilic acid produced, since pyridoxal phosphate appears to be already present in sufficient quantities in both kidneys. However, the addition of the pyridoxal phosphate antii-
metabolite, deoxypyridoxal phosphate, produces complete inhibition of both enzyme systems in the infested kidney with no production of either kynu-
renic acid or anthranilic acid. The effect of deoxy-
pyridoxal phosphate on kynureniine metabolism in the normal kidney is manifested only by a slight inhibition of kynureninase and a decreased pro-
duction of anthranilic acid. The lack of inhibition in the normal kidney might be due to the presence of extra concentrations of pyridoxal phosphate that could counteract the added deoxypyridoxal phosphate. It is noteworthy that the normal kidney metabolizes kynurenine in a manner similar to the normal liver when the latter is supplemented with exogenous pyridoxal phosphate. In the latter case, the addition of deoxypyridoxal phosphate also resulted in a slight decrease in kynureninase activity (Amer et al. 1967a).

Tartar emetic, when present at a concentration comparable with that attainable in vivo (Otto & Maren, 1950), inhibits both kynureninase and kynurenine transaminase in both the normal and infested mouse kidneys. The inhibition is more pronounced on the infested mouse kidney and in particular on kynurenine transaminase. The preferential inhibition of kynurenine transaminase by tartar emetic was also observed in the mouse liver (Amer et al. 1967b). This might again be due to the higher sensitivity of kynurenine transaminase to pyridoxal phosphate lack. Different sensitivities of pyridoxal phosphate-requiring enzymes along the formylkynurenine pathway of tryptophan metabolism have been reported previously (Holtz & Palm, 1964). Though the kidney seems to meta-
bolize kynurenine at a higher rate than the liver on a weight to weight basis under normal conditions, i.e. in the absence of supplemented pyridoxal phosphate, the actual contribution of kidney to the metabolism in vivo is expected to be small, owing to the relatively smaller size of that organ. The metabolism of kynurenine by the kidney seems to be less readily affected by either S. mansoni in-
festation or tartar emetic than the metabolism by the liver. However, treatment with antimony-
containing schistosomicidal agents might lead to altered tryptophan metabolism in the kidney. In the latter case, the kidney would then begin to contribute to the already abnormal pattern originating in the liver. This might contribute to the possible development of bladder tumours.

The authors thank Professor A. A. El-Halawani and Mrs Huda Farag for the supply of infested mice. They are grateful to Professor Hussein Sadek and Professor M. M. Motawi for their generous help. They are also indebted to all the members of the Cancer Research Unit, Medical Research Institute, for assisting in the execution of some of the experiments. M. H. A. D. is a Post-graduate Fellow at the Medical Research Institute, Alexandria, U.A.R.

REFERENCES
Abdel-Tawab, G. A., Kelada, F. S., Kelada, N. L., Abdel-
Cancer, 15, 479.
Alifano, A., Papa, S., Taucredi, F., Elicio, M. A. &
Allen, M. J., Boyland, E., Dukes, C. E., Horning, E. S. &
Amer, M. S., Abdel-Daim, M. H. & Abdel-Tawab, G. A.
Amer, M. S., Abdel-Daim, M. H. & Abdel-Tawab, G. A.
Amer, M. S., Abdel-Daim, M. H. & Abdel-Tawab, G. A.
Boyland, E. (1963). The Biochemistry of Bladder Cancer,
Res. 24, 596.
Res. 25, 1432.
Cancer, 18, 592.
Chem. 203, 205.
18, 888.
56, 931.