The Inhibition of Deoxyribonucleic Acid Nucleotidyltransferase by Stilboestrol Derivatives

BY A. R. FAHMY AND K. GRIFFITHS

Velindre Memorial Centre for Cancer Research, Whitchurch, Cardiff CF4 7XL and Tenovus Institute for Cancer Research, Welsh National School of Medicine, Cardiff CF4 4XX

(Received 19 February 1968)

The inhibition by diethylstilboestrol of DNA nucleotidyltransferase isolated from calf thymus was studied. The inhibition exercised by diethylstilboestrol appears to obey competitive kinetics with respect to DNA primer. The activities of both replicative and terminal enzymes were affected to the same extent. There was no evidence of binding between DNA and diethylstilboestrol. A comparative study of the inhibitory effects of some stilboestrol derivatives is presented. The alkyl substitution in the αα'-positions seem to alter the inhibitory effect of these compounds: dimethylstilboestrol was more inhibitory than stilbene, and diethylstilboestrol was more inhibitory than dimethylstilboestrol. Hexoestrol, in which the αα'-ethylenic linkage is saturated, was the most effective inhibitor.

The androgen-dependence of human prostatic cancer was established by the classical investigations by Huggins & Hodges (1941). Treatment of prostatic cancer by anti-androgen therapy such as castration or diethylstilboestrol administration followed from these experiments. The oestrogen-dependent nature of breast carcinoma has also resulted in extensive trials of anti-oestrogenic compounds such as 17β-hydroxy-2α-methyl-5α-androstan-3-one (Blackburn & Childs, 1959). Studies on the molecular basis of steroid action must therefore provide valuable information on the biochemical control mechanisms associated with hormone-dependent tumours. Though investigations concerned with the effects of steroid hormones on RNA polymerase and RNA synthesis have been reported (Liao & Williams-Ashman, 1962; Wilson, 1962; Hamilton, 1964), little attention has been directed towards the hormonal control of DNA synthesis. However, Fahmy, Griffiths, Maher & Williams (1967) have shown that certain oestradiols stimulate in vitro the isolated DNA polymerase enzyme system (DNA nucleotidyltransferase, EC 2.7.7.7) prepared from calf thymus gland. Since diethylstilboestrol inhibits the oestrogen-stimulated mitotic activity of mouse vagina (Emmens, Cox & Martin, 1962), it was therefore decided to investigate the effect of this compound and those with related structures on the DNA polymerase enzyme system. It is noteworthy that Mangan, Neal & Williams (1967) have reported that diethylstilboestrol inhibited both RNA polymerase activity and the incorporation of amino acids by ribonucleoprotein particles isolated from prostatic tissue.

MATERIALS AND METHODS

Chemicals. Deoxy-GTP, deoxy-CTP, deoxy-ATP and [3H]TTP* (specific radioactivity 2.0c/m/mole) were obtained from Schwarz BioResearch Inc., New York, N.Y., U.S.A. Non-radioactive TTP was purchased from Sigma (London) Chemical Co., London, S.W. 6. Calf thymus DNA and all other A.R. reagents were supplied by British Drug Houses Ltd., Poole, Dorset. The dimethylstilboestrol was a gift from Dr L. Martin, Imperial Cancer Research Fund, London, W.2, and the dienoestrol was provided by Dr O. Morton, Medical Director, B.D.H. (Research) Ltd., London, W.1. Hexoestrol, diethylstilboestrol and stilbene were obtained from Koch—Light Laboratories Ltd., Colnbrook, Bucks.

Enzyme studies. The enzyme preparation used in this investigation was the semi-purified F3 fraction isolated from calf thymus by the procedure of Shepherd & Keir (1966). The enzyme was stored in sealed 2-0ml. ampoules at −20°. The [3H]TTP was made up in water and diluted with non-labelled TTP to provide a specific radioactivity of 10 × 102−12 × 104 counts/min./μmole. The enzyme (200-250μg. of protein) was incubated at 37° for 60 min. (unless otherwise stated) with 50μmole of [3H]TTP in 255μl. of a medium containing 5μmole of tris—HCl buffer, pH 7-5, 15μmole of KCl, 100μmole of EDTA, 1μmole of MgCl2, 2μmole of 2-mercaptoethanol and 50μg. (unless stated otherwise) of thermally denatured DNA. For the determination of the

* Abbreviations: TTP, thymidine 5'-triphosphate; TMP, thymidine 5'-monophosphate.
replicative enzyme activity, the medium contained 50m,moles each of deoxy-ATP, deoxy-CTP and deoxy-GTP. These triphosphates were omitted from the terminal enzyme assay. Either 5μl. of ethanol or one of the compounds under investigation in this volume of ethanol was added to the reaction mixture.

Protein content of the enzyme preparation was determined by the method of Lowry, Rosebrough, Farr & Randall (1951).

Radioactivity measurement. Samples (50μl.) were withdrawn at zero time and after 60min. placed on fibre-glass disks (Whatman GF/C), washed in ice-cold 5% (w/v) trichloroacetic acid and dried with ethanol. The disks were placed in vials containing 10ml. of scintillation liquid [473ml. of toluene, 25ml. of Hyamine hydroxide, 100mg. of 1,4-bis-(5-phenyloxazol-2-yl)benzene and 2g. of 1,5-diphenyloxazole] and heated for 10min. at 57°. The radioactivity was measured with a Nuclear-Chicago model 6860 liquid-scintillation spectrometer.

RESULTS

Inhibition of DNA polymerase by diethylstilboestrol. The relationship between DNA polymerase activity (expressed as mmoles of [3H]TMP incorporated/mg. of protein) and the concentration of diethylstilboestrol in the incubation medium is shown in Fig. 1. A linear relationship was observed between 2 and 6μg. of diethylstilboestrol. Insolubility of diethylstilboestrol occurs at concentrations above 15μg./reaction mixture.

Inhibition of DNA polymerase activity by diethylstilboestrol at various DNA primer concentrations. The activity of DNA polymerase was determined at various concentrations of DNA primer, with and without the presence of diethylstilboestrol (2-5μg. in the reaction medium). The results are shown in Fig. 2. A small amount of [3H]TMP (0-3μmole/mg. of protein) was incorporated at zero concentration of DNA primer. This was not removed by subsequent washings with ice-cold 5% trichloroacetic acid and could be due to enzyme contamination with DNA from thymus tissue. This was taken into account in the results illustrated in Fig. 2 by subtracting this amount from all the data presented in Fig. 2.

The data of Fig. 2 were redrawn as a double-reciprocal plot (Lineweaver & Burk, 1934) shown in Fig. 3. Linear plots were obtained for the control and diethylstilboestrol-inhibited assays. The two plots intersected on the vertical axis, suggesting that diethylstilboestrol exerts its effect by competitively inhibiting the enzyme.

Inhibition of DNA polymerase activity by compounds related to diethylstilboestrol. Table 1 summarizes the results of the comparisons made between the compounds investigated. The compounds were each added in 5μl. of ethanol to provide a final concentration of 40μM in the incubation medium.

Fig. 1. Inhibition of DNA polymerase activity by diethylstilboestrol. The reaction mixture was prepared according to the method of Fahmy et al. (1967). A 50μg. sample of thermally denatured DNA (calf thymus), 200μg. of protein of a partially purified DNA polymerase isolated from calf thymus, [3H]TTP (specific radioactivity 10x10⁶counts/min./μmole) and the indicated amounts of diethylstilboestrol were added. Incubation was at 37° for 2hr.

Fig. 2. Inhibition of DNA polymerase activity by diethylstilboestrol at various concentrations of DNA primer. The assay conditions were as described in Fig. 1 with the following exceptions: thermally denatured DNA was included at the concentrations shown and the specific radioactivity of [3H]TTP was 12x10⁶counts/min./μmole. Incubation was at 37° for 2hr. ○, Control incubation without diethylstilboestrol; ●, incubation with 2-5μg. of diethylstilboestrol added.

Inhibition of terminal DNA polymerase by diethylstilboestrol. Partially purified preparations of DNA polymerase from calf thymus have revealed
both DNA activity of thymus and the presence of two distinct enzymes. The replicative enzyme gives optimum activity with the four triphosphates. The terminal enzyme utilizes only one triphosphate (Keir & Smith, 1963), extensively incorporating TMP only into the terminal positions of the DNA primer (Keir, Shepherd & Hay, 1963). The inhibitory effect of diethylstilboestrol on both enzymes over a 3hr. period is illustrated in Fig. 4. The activity of the terminal enzyme in the preparation was 15–20% of the activity of the replicative system. Both enzymes were inhibited to the same extent by diethylstilboestrol. The concentration of ethanol used in these experiments had no effect on the activity of either the replicative or terminal enzymes.

DISCUSSION

The present investigation clearly demonstrates the inhibition in vitro by diethylstilboestrol of the activity of DNA polymerase isolated from calf thymus gland. The degree of inhibition varied from one enzyme preparation to another, as observed by Keir, Omura & Shepherd (1963) when they reported inhibition of DNA polymerase activity by actinomycin D. It is noteworthy that Mangan et al. (1967) demonstrated the inhibition by diethylstilboestrol of the RNA polymerase activity of nuclei isolated from rat prostate. Since both DNA polymerase and RNA polymerase utilize DNA as a primer in the system, it might be suggested that diethylstilboestrol exercises its inhibitory action either by interference with the DNA primer that is common to both enzymes, or by interfering with the binding of DNA to the active site on the enzymes. Preliminary observations, not reported, suggest that the u.v.-absorption characteristics of the DNA are not altered by the presence of diethylstilboestrol. Binding may not therefore occur, though actinomycin D exerts its inhibitory effect by binding to the guanine residues of the DNA primer (Reich, Goldberg & Rabinowitz, 1962; Goldberg, Rabinowitz & Reich, 1962).

The introduction of oestrogen administration for the treatment of carcinoma of the prostate (Huggins, Scott & Hodges, 1941) was based on experiments showing that the growth of prostatic cancer was androgen-dependent and that oestrogens antagonized the androgenic action. It is not completely

Table 1. Relation between chemical structure and degree of inhibition

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stilbene</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>4,4'-Dihydroxystilbene</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>Dimethylstilboestrol</td>
<td>13 ± 1</td>
</tr>
<tr>
<td>Dienoestrol</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>Diethylstilboestrol</td>
<td>28 ± 2</td>
</tr>
<tr>
<td>Hexoestrol</td>
<td>38 ± 2</td>
</tr>
</tbody>
</table>
understood, however, whether oestrogens exercise this antagonism via the pituitary, thereby decreasing testosterone secretion from the testis, by a direct effect on the testis or by inhibiting some mechanism at the site of action in the prostate. Slaunwhite, Sandberg, Jackson & Staubitz (1962) have reported that the activity of the 17β-hydroxy steroid dehydrogenase enzyme system converting androstenedione into testosterone is low in testicular tissue removed from patients with prostatic cancer who had been treated with diethylstilboestrol. This capacity to synthesize testosterone can be restored by administration of human chorionic gonadotrophin concomitantly with diethylstilboestrol, thus being consistent with an effect of oestrogen on testicular function mediated through the pituitary. Further, plasma testosterone and luteinizing hormone concentrations are decreased by diethylstilboestrol therapy (Alder et al. 1968). There is also evidence that oestrogens have a direct effect on the testis (Samuels, Short & Huseby, 1964), but the results now reported on DNA polymerase and those of Mangan et al. (1967) on RNA polymerase suggest that there may also be a direct biochemical effect of diethylstilboestrol in the prostatic tissue. This is supported by the observation of a selective uptake of radioactivity in the prostate after the intraperitoneal administration of [3H]diethylstilboestrol (Mangan et al. 1967). No identification of the radioactive material in the tissues was attempted, however.

The relationship between the structure of the stilboestrol derivative and the degree of inhibition of DNA polymerase (Table 1) is of interest. The observation that diethylstilboestrol more efficiently inhibits the system than dimethylstilboestrol indicates that the groups attached to the central ethylene linkage are effective in the binding of inhibitor to enzyme. Though the p-hydroxyl groups may also aid this binding, it has been shown that stilbene inhibited DNA polymerase nearly as effectively as did dihydroxystilbene. Hexoestrol, the reduced form of diethylstilboestrol, showed the greatest inhibitory action of the compounds studied.

Diethylstilboestrol has therefore been shown to inhibit the activity of the DNA polymerase enzyme system isolated from calf thymus. Though actinomycin also inhibits this system, the effectiveness of diethylstilboestrol as an anti-androgenic compound may be due at least in part to its selective uptake by prostatic tissue. It is noteworthy that 17β-hydroxy-2α-methyl-5α-androstan-3-one, which has been used as an anti-oestrogen in breast cancer and prevents the uptake of oestrogen by human breast tissue (Deshpande, Jensen, Bulbrook, Berne & Ellis, 1967), also inhibits the DNA polymerase by 10% (A. R. Fahmy & K. Griffiths, unpublished work). Hexoestrol, the most effective of the inhibitors studied, is also concentrated by hormone-responsive human breast tumours to a greater extent than by the unresponsive type of tumour (Folca, Glascoock & Irvine, 1961).

The authors are grateful to the Tenovus Organisation for their generous financial support. The technical assistance of Miss J. Williams is appreciated.