Phosphatase of regenerating liver (PRL) is overexpressed in metastatic cancers and actively drives their malignant progression. Many studies on cultured cancer cells have implied PRL overexpression as a stimulant for cellular signaling involved in cell proliferation. However, its role in the tightly adhered and polarized epithelial cells remains largely uncharacterized. In this study, we show that inducible expression of PRL in MDCK normal epithelial cells sensitized MET, the receptor for hepatocyte growth factor (HGF), to functional activation by HGF. We found that PRL expression amplified tyrosine phosphorylation levels of various proteins, among which MET was identified to be the most abundant. This phosphorylation occurred selectively at Y1234/1235 in the activation loop of MET, whereas phosphorylation of Y1349 in the effector-binding site, which is directly involved in downstream signaling, was almost undetectable. Consistently, PRL overexpression by itself did not cause observable alterations at the cellular level. However, when cells were stimulated with HGF, phosphorylation of Y1349 was much more strongly induced in PRL-expressing cells than in control cells. This resulted in robust cell scattering and tubulogenesis, even with low levels of HGF. Collectively, these results demonstrate a unique role of PRL in regulating MET function, which is known to be crucial for remodeling of epithelial tissues and malignant progression of cancers.

You do not currently have access to this content.