Skip to main content

Main menu

  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
      • Biochemical Journal- Terms and Conditions of Usage
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

User menu

  • Log-in
  • Subscribe
  • Contact Us

Search

  • Advanced search
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

Log-in

Sign-up for alerts  
  • My Cart
Biochemical Journal
Browse Archive
Advanced Search
  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us

Review article

Replication fork dynamics and the DNA damage response

Rebecca M. Jones, Eva Petermann
Biochemical Journal Apr 01, 2012, 443 (1) 13-26; DOI: 10.1042/BJ20112100
Rebecca M. Jones
School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
Eva Petermann
School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
  • For correspondence: e.petermann@bham.ac.uk
  • Article
  • Figures
  • Info & Metrics
  • PDF
Loading

Abstract

Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.

  • cell cycle
  • checkpoint
  • DNA repair
  • DNA helicase
  • homologous recombination
  • translesion synthesis

Abbreviations: AND-1, WD repeat and HMG-box DNA-binding protein 1; ASF1, anti-silencing function 1; ATM, ataxia telangiectasia mutated; ATR, ATM- and Rad3-related; BLM, Bloom syndrome, RecQ helicase-like; BRCA, breast cancer early onset; CAF-1, chromatin assembly factor 1; CDA, cytidine deaminase; CDC6, cell division cycle; CDK, cyclin-dependent kinase; CDT1, chromatin licensing and DNA replication factor 1; CHK, checkpoint kinase; D-loop, displacement loop; DDK, Dbf4/Drf1-dependent CDC7 kinase; DSB, double-strand break; EME1, essential meiotic endonuclease 1 homologue 1; EXO1, exonuclease 1; FA, Fanconi anaemia; FACT, facilitates chromatin transcription; FANCE, FA, complementation group E; GEN1, Gen endonuclease homologue 1; GINS, go-ichi-ni-san; HJ, Holliday junction; HLTF, helicase-like transcription factor; HR, homologous recombination; hRMI1, RecQ-mediated genome instability 1, homologue; MCM, mini-chromosome maintenance; MMS, methyl methanesulfonate; MRE11, meiotic recombination 11; MUS81, MUS81 endonuclease homologue; ORC, origin recognition complex; PARP, poly(ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen; PLK, Polo-like kinase; pre-RC, pre-replication complex; RFB, replication fork barrier; RFC, replication factor C; SHPRH, SNF2 histone linker PHD RING helicase; SMARCAL1, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1; ssDNA, single-stranded DNA; TIM, timeless homologue; TIPIN, TIMELESS-interacting protein; TLK, tousled-like kinase; TLS, translesion synthesis; TOP, topoisomerase; WRN, Werner syndrome, RecQ helicase-like; XRCC, X-ray repair complementing defective repair in Chinese hamster cells

  • © The Authors Journal compilation © 2012 Biochemical Society
View Full Text

Log in using your username and password

Enter your Biochemical Journal username.
Enter the password that accompanies your username.
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
Previous ArticleNext Article
Back to top

 

 

April 2012

Volume: 443 Issue: 1

Biochemical Journal: 443 (1)
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Ed Board (PDF)
  • Front Matter (PDF)

Actions

Email

Thank you for your interest in spreading the word about Biochemical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Replication fork dynamics and the DNA damage response
(Your Name) has forwarded a page to you from Biochemical Journal
(Your Name) thought you would like to see this page from the Biochemical Journal web site.
Share
Replication fork dynamics and the DNA damage response
Rebecca M. Jones, Eva Petermann
Biochemical Journal Apr 2012, 443 (1) 13-26; DOI: 10.1042/BJ20112100
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Facebook logo Mendeley logo
Citation Tools
Replication fork dynamics and the DNA damage response
Rebecca M. Jones, Eva Petermann
Biochemical Journal Apr 2012, 443 (1) 13-26; DOI: 10.1042/BJ20112100

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts

Please log in to add an alert for this article.

Request Permissions
Save to my folders

View Full PDF

 Open in Utopia Docs
  • Tweet Widget
  • Facebook Like

Jump To

  • Article
    • Abstract
    • INTRODUCTION
    • EUKARYOTIC DNA REPLICATION
    • DNA-DAMAGE-RESPONSE PATHWAYS AT REPLICATION FORKS
    • REGULATION OF REPLICATION BY THE DNA DAMAGE RESPONSE
    • CONCLUSIONS
    • FUNDING
    • Acknowledgments
    • References
  • Figures
  • Info & Metrics
  • PDF

Keywords

cell cycle
checkpoint
DNA repair
DNA helicase
homologous recombination
translesion synthesis

Related Articles

Cited By...

Subjects

  • Gene
  • Cell
  • Portland Press Homepage
  • Publish With Us
  • Advertising
  • Technical Support
  • Biochemical Journal
  • Clinical Science
  • Essays in Biochemistry
  • Emerging Topics in Life Sciences
  • Biochemical Society Transactions
  • Neuronal Signaling
  • Bioscience Reports
  • Cell Signalling Biology
  • Biochemical Society Symposia

Portland Press Limited
Charles Darwin House
12 Roger Street
London WC1N 2JU
Tel: +44(0) 20 7685 2410
Fax: +44(0) 20 7685 2469
Email: editorial@portlandpress.com

The Biochemical Society