Biochemical Journal

Research article

Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae

Stefaan WERA, Ellen DE SCHRIJVER, Ilse GEYSKENS, Solomon NWAKA, Johan M. THEVELEIN

Abstract

A variety of results has been obtained consistent with activation of neutral trehalase in Saccharomyces cerevisiae through direct phosphorylation by cAMP-dependent protein kinase (PKA). A series of neutral trehalase mutant alleles, in which all evolutionarily conserved putative phosphorylation sites were changed into alanine, was tested for activation in vitro (by PKA) and in vivo (by glucose addition). None of the mutations alone affected the activation ratio, whereas all mutations combined resulted in an inactive enzyme. All mutant alleles were expressed to similar levels, as shown by Western blotting. Several of the point mutations significantly lowered the specific activity. Using this series of mutants with different activity levels we show an inverse relationship between trehalase activity and heat-shock survival during glucose-induced trehalose mobilization. This is consistent with a stress-protective function of trehalose. On the other hand, reduction of trehalase activity below a certain threshold level impaired recovery from a sublethal heat shock. This suggests that trehalose breakdown is required for efficient recovery from heat shock, and that the presence of trehalase protein alone is not sufficient for efficient heat-stress recovery.

  • protein phosphorylation
  • trehalose
  • yeast