Biochemical Journal

Research article

Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei

Evelyn L. RIDGLEY, Zhao-hui XIONG, Larry RUBEN


Here we examine a cell death process induced by reactive oxygen species (ROS) in the haemoflagellate Trypanosoma brucei brucei. Ca2+ distribution in cellular compartments was measured with stable transformants expressing aequorin targeted to the cytosol, nucleus or mitochondrion. Within 1.5 h of ROS production, mitochondrial Ca2+ transport was impaired and the Ca2+ barrier between the nuclear envelope and cytosol was disrupted. Consequently the mitochondrion did not accumulate Ca2+ efficiently in response to an extracellular stimulus, and excess Ca2+ accumulated in the nucleus. The terminal transferase deoxytidyl uridine end labelling assay revealed that, 5 h after treatment with ROS, extensive fragmentation of nuclear DNA occurred in over 90% of the cells. Permeability changes in the plasma membrane did not occur until an additional 2 h had elapsed. The intracellular Ca2+ buffer, EGTA acetoxymethyl ester, prevented DNA fragmentation and prolonged the onset of changes in cell permeability. Despite some similarities to apoptosis, nuclease activation was not a consequence of caspase 3, caspase 1, calpain, serine protease, cysteine protease or proteasome activity. Moreover, trypanosomes expressing mouse Bcl-2 were not protected from ROS even though protection from mitochondrial dysfunction and ROS have been reported for mammalian cells. Overall, these results demonstrate that Ca2+ pathways can induce pathology in trypanosomes, although the specific proteins involved might be distinct from those in metazoans.

  • apoptosis
  • aequorin
  • Bcl-2
  • Ca2+ flux
  • mitochondria