Skip to main content

Main menu

  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
      • Biochemical Journal- Terms and Conditions of Usage
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us
  • Other Publications
    • Biochemical Journal
    • Clinical Science
    • Bioscience Reports
    • Neuronal Signaling
    • Biochemical Society Transactions
    • Essays in Biochemistry
    • Emerging Topics in Life Sciences
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

User menu

  • Log-in
  • Subscribe
  • Contact Us

Search

  • Advanced search
  • Other Publications
    • Biochemical Journal
    • Clinical Science
    • Bioscience Reports
    • Neuronal Signaling
    • Biochemical Society Transactions
    • Essays in Biochemistry
    • Emerging Topics in Life Sciences
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

Log-in

Sign-up for alerts  
  • My Cart
Biochemical Journal
Browse Archive
Advanced Search
  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us

Research article

A dimeric form of prothrombin on membrane surfaces

Peter J. ANDERSON
Biochemical Journal Dec 15, 1998, 336 (3) 631-638; DOI: 10.1042/bj3360631
Peter J. ANDERSON
Department of Biochemistry, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
  • For correspondence: panderso@uottawa.ca
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Blood coagulation requires the conversion of zymogens to active enzymes. These reactions are facilitated by Ca2+-dependent protein binding to membrane surfaces containing anionic phospholipids. Here it is shown that only in the presence of both Ca2+ and phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine can a prothrombin dimer be chemically cross-linked. A cross-linker containing evenly spaced reactive groups was prepared by activating the carboxy groups of a ten-residue glutamic acid peptide and allowed to react with physiological concentrations of prothrombin. When Ca2+ and anionic phospholipids were both present during exposure to the cross-linker, it was found that more than 50% of the prothrombin was trapped as a chemically defined dimer with reaction times of the order of 1 min. The dimer yield remained high even when reactions were performed at high phospholipid-to-protein ratios at protein concentrations an order of magnitude less than physiological. Amino acid sequencing of a CNBr peptide produced from the purified dimer localized the cross-link to residues Lys341 and Lys427 of prothrombin. The specificity and high yield under mild conditions of the cross-linking suggest that dimeric membrane bound prothrombin might be a physiologically relevant substrate for the formation of thrombin. Prothrombinase converts this modified protein to an enzyme that catalyses the hydrolysis of a thrombin chromogenic substrate as efficiently as thrombin and is inhibited by a thrombin active-site directed inhibitor, but is a thrombin dimer. The thrombin dimer has impaired activity compared with thrombin with respect to physiological functions requiring binding to exosite I. A model based on the known structure of thrombin is presented that can account for the prothrombin dimer and the properties of the dimeric thrombin formed from it.

  • The Biochemical Society, London © 1998
Previous ArticleNext Article
Back to top

 

December 1998

Volume: 336 Issue: 3

Biochemical Journal: 336 (3)
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)

Actions

Email

Thank you for your interest in spreading the word about Biochemical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A dimeric form of prothrombin on membrane surfaces
(Your Name) has forwarded a page to you from Biochemical Journal
(Your Name) thought you would like to see this page from the Biochemical Journal web site.
Share
A dimeric form of prothrombin on membrane surfaces
Peter J. ANDERSON
Biochemical Journal Dec 1998, 336 (3) 631-638; DOI: 10.1042/bj3360631
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Facebook logo Mendeley logo
Citation Tools
A dimeric form of prothrombin on membrane surfaces
Peter J. ANDERSON
Biochemical Journal Dec 1998, 336 (3) 631-638; DOI: 10.1042/bj3360631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Request Permissions
Save to my folders

View Full PDF

 Open in Utopia Docs
  • Tweet Widget
  • Facebook Like

Jump To

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

  • Portland Press Homepage
  • Publish With Us
  • Advertising
  • Technical Support
  • Biochemical Journal
  • Clinical Science
  • Essays in Biochemistry
  • Emerging Topics in Life Sciences
  • Biochemical Society Transactions
  • Neuronal Signaling
  • Bioscience Reports
  • Cell Signalling Biology
  • Biochemical Society Symposia

Portland Press Limited
Charles Darwin House
12 Roger Street
London WC1N 2JU
Email: editorial@portlandpress.com

The Biochemical Society