Skip to main content

Main menu

  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
      • Biochemical Journal- Terms and Conditions of Usage
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us
  • Other Publications
    • Biochemical Journal
    • Clinical Science
    • Bioscience Reports
    • Neuronal Signaling
    • Biochemical Society Transactions
    • Essays in Biochemistry
    • Emerging Topics in Life Sciences
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

User menu

  • Log-in
  • Subscribe
  • Contact Us

Search

  • Advanced search
  • Other Publications
    • Biochemical Journal
    • Clinical Science
    • Bioscience Reports
    • Neuronal Signaling
    • Biochemical Society Transactions
    • Essays in Biochemistry
    • Emerging Topics in Life Sciences
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

Log-in

Sign-up for alerts  
  • My Cart
Biochemical Journal
Browse Archive
Advanced Search
  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us

Research article

Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets

Jean-Christophe JONAS, Jean-Claude HENQUIN
Biochemical Journal Apr 01, 1996, 315 (1) 49-55; DOI: 10.1042/bj3150049
Jean-Christophe JONAS
Unité d'Endocrinologie et Métabolisme, University of Louvain, Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
Jean-Claude HENQUIN
Unité d'Endocrinologie et Métabolisme, University of Louvain, Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The potential roles of protein tyrosine kinases (TKs) and of phosphotyrosine phosphatases (PTPs) in pancreatic islet function are not known. In this study, we investigated whether vanadate, a potent PTP inhibitor, affects phosphoinositide (PI) metabolism by a TK-dependent pathway in isolated mouse islets. To avoid the confounding effects of changes in Ca2+ influx, all experiments were performed in the absence of Ca2+. In the presence of 15 mM glucose, vanadate, acetylcholine (ACh) or [Arg]vasopressin (AVP) strongly stimulated InsP production. Vanadate also increased PtdInsP levels in membranes. The TK inhibitor genistein (not its inactive analogues genistin and daidzein) significantly reduced vanadate effects, but was without effect in the absence of stimulation or in the presence of ACh or AVP. Islet proteins resolved by SDS/PAGE were analysed by immunoblotting with anti-phosphotyrosine antibody. Under control conditions, several phosphotyrosyl-proteins (PYPs) were present. Vanadate increased phosphotyrosine residues on several PYPs, notably two proteins of 145 and 85 kDa. This effect was prevented by genistein. p145 and p85 could correspond to phospholipase Cγ (PLCγ) and the regulatory subunit of PtdIns-3-kinase (PtdIns-3K) respectively. Both proteins are expressed in islets, as revealed by immunoblots with specific antibodies. Tungstate, another PTP inhibitor, reproduced vanadate effects, but inhibition of PtdIns-3K by wortmannin failed to affect vanadate-increased PtdInsP levels. Incubation of the islets in the presence of 10% (v/v) fetal calf serum instead of BSA increased InsP production and this effect was prevented by genistein. These results suggest that inhibition of PTP increases InsP production in mouse islets by a TK-dependent pathway. They also provide evidence for a potential role of TK and PTP in pancreatic B-cell function.

  • The Biochemical Society, London © 1996
Previous ArticleNext Article
Back to top

 

April 1996

Volume: 315 Issue: 1

Biochemical Journal: 315 (1)
  • Table of Contents
  • Index by author

Actions

Email

Thank you for your interest in spreading the word about Biochemical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets
(Your Name) has forwarded a page to you from Biochemical Journal
(Your Name) thought you would like to see this page from the Biochemical Journal web site.
Share
Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets
Jean-Christophe JONAS, Jean-Claude HENQUIN
Biochemical Journal Apr 1996, 315 (1) 49-55; DOI: 10.1042/bj3150049
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Facebook logo Mendeley logo
Citation Tools
Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets
Jean-Christophe JONAS, Jean-Claude HENQUIN
Biochemical Journal Apr 1996, 315 (1) 49-55; DOI: 10.1042/bj3150049

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Request Permissions
Save to my folders

View Full PDF

 Open in Utopia Docs
  • Tweet Widget
  • Facebook Like

Jump To

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

  • Portland Press Homepage
  • Publish With Us
  • Advertising
  • Technical Support
  • Biochemical Journal
  • Clinical Science
  • Essays in Biochemistry
  • Emerging Topics in Life Sciences
  • Biochemical Society Transactions
  • Neuronal Signaling
  • Bioscience Reports
  • Cell Signalling Biology
  • Biochemical Society Symposia

Portland Press Limited
Charles Darwin House
12 Roger Street
London WC1N 2JU
Email: editorial@portlandpress.com

The Biochemical Society