Skip to main content

Main menu

  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
      • Biochemical Journal- Terms and Conditions of Usage
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

User menu

  • Log-in
  • Subscribe
  • Contact Us

Search

  • Advanced search
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

Log-in

Sign-up for alerts  
  • My Cart
Biochemical Journal
Browse Archive
Advanced Search
  • Home
  • About the Journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & Metrics
    • Benefits of Publishing
    • Advertising/Sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society Member Benefits
  • For Librarians
    • Subscriptions and Pricing
    • Check Your Usage
    • Terms and Conditions
    • Open Access Policy
    • FAQs for Librarians
    • Register for Free Trial
  • For Readers
    • Subscribe
    • Rights and Permissions
    • Biochemical Society Member Benefits
    • Journal Access for Biochemical Society Members
    • Request a Free Trial
  • Collections
    • Article Collections
    • Classic Articles
  • Help
    • Technical Support
    • Contact Us

[Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase

M Okada, K Owada, H Nakagawa
Biochemical Journal Oct 01, 1986, 239 (1) 155-162; DOI: 10.1042/bj2390155
M Okada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
K Owada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
H Nakagawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A [phosphotyrosine]protein phosphatase (PTPPase) was purified almost to homogeneity from rat brain, with [32P]p130gag-fps, an oncogene product of Fujinami sarcoma virus, as substrate. The characteristics of the purified preparation of PTPPase were as follows: the enzyme was a monomer with a molecular mass of 23 kDa; its optimum pH was 5.0-5.5; its activity was not dependent on bivalent cations; its activity was strongly inhibited by sodium vanadate, but was not inhibited by ZnCl2, L(+)-tartrate or NaF; it catalysed the dephosphorylation of [32P]p130gag-fps, [[32P]Tyr]casein, p-nitrophenyl phosphate and L-phosphotyrosine, but did not hydrolyse [[32P]Ser]tubulin, L-phosphoserine, DL-phosphothreonine, 5′-AMP, 2′-AMP or beta-glycerophosphate significantly. During the purification, most of the PTPPase activity was recovered in distinct fractions from those of conventional low-molecular-mass acid phosphatase (APase), which was reported to be a major PTPPase [Chernoff & Li (1985) Arch. Biochem. Biophys. 240, 135-145], from DE-52 DEAE-cellulose column chromatography, and those two enzymes could be completely separated by Sephadex G-75 column chromatography. APase also showed PTPPase activity with [32P]p130gag-fps, but the specific activity was lower than that of PTPPase with molecular mass of 23 kDa, and it was not sensitive to sodium vanadate. These findings suggested that PTPPase (23 kDa) was the major and specific PTPPase in the cell.

  • © 1986 London: The Biochemical Society
Previous ArticleNext Article
Back to top

 

 

October 1986

Volume: 239 Issue: 1

Biochemical Journal: 239 (1)
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
  • Advertising (PDF)
  • Front Matter (PDF)

Actions

Email

Thank you for your interest in spreading the word about Biochemical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
[Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase
(Your Name) has forwarded a page to you from Biochemical Journal
(Your Name) thought you would like to see this page from the Biochemical Journal web site.
Share
[Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase
M Okada, K Owada, H Nakagawa
Biochemical Journal Oct 1986, 239 (1) 155-162; DOI: 10.1042/bj2390155
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Facebook logo Mendeley logo
Citation Tools
[Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase
M Okada, K Owada, H Nakagawa
Biochemical Journal Oct 1986, 239 (1) 155-162; DOI: 10.1042/bj2390155

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Request Permissions
Save to my folders

View Full PDF

 Open in Utopia Docs
  • Tweet Widget
  • Facebook Like

Jump To

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

  • Portland Press Homepage
  • Publish With Us
  • Advertising
  • Technical Support
  • Biochemical Journal
  • Clinical Science
  • Essays in Biochemistry
  • Emerging Topics in Life Sciences
  • Biochemical Society Transactions
  • Neuronal Signaling
  • Bioscience Reports
  • Cell Signalling Biology
  • Biochemical Society Symposia

Portland Press Limited
Charles Darwin House
12 Roger Street
London WC1N 2JU
Tel: +44(0) 20 7685 2410
Fax: +44(0) 20 7685 2469
Email: editorial@portlandpress.com

The Biochemical Society