Biochemical Journal

Abstract

The kinetics of rabbit muscle pyruvate kinase were studied in assays at pH 7.4, where the relationships between the initial velocities of the catalysed reaction and the concentrations of substrates ADP, phosphoenolpyruvate and Mg2+ are non-hyperbolic. The data were used to test the applicability of the exponential model for a regulatory enzyme, which has been here extended to describe the behaviour of a three-substrate enzyme. It appears that the data can be represented by the model and as a result permit the conclusion that the substrates influence one another's binding by the same type of charge interactions that are evident in the Michaelis-Menten kinetics of the enzyme observed at pH 6.2. Evidence is also presented indicating that MgADP acts as a dead-end inhibitor of the enzyme at pH 7.4.