1. In the presence of both CO and O2, ox heart cytochrome c oxidase forms a 607 nm-peak intermediate distinct from both the cytochrome a2+a3 2+CO and the cytochrome a3+a3 2+CO (‘mixed-valence’) CO complexes. 2. This aerobic CO compound is stable towards ferricyanide addition, but decomposed on treatment with ferric cytochrome a2 ligands such as formate, cyanide and azide. 3. Addition of formate or cyanves rise to a complex with alpha-peak at 598 nm, not identical with any azide complex of the free enzyme, but possibly a cytochrome a3 2+NO complex produced by oxidative attack of partially reduced O2 on the azide. 4. The results support the idea that although the initial reaction of oxygen is with cytochrome a3 2+, the next step is not an oxidation of the ferrous cytochrome a3, but a transfer of O2 to a neighbouring group, such as Cu+, to give Cu2+O2- or similar complexes. 5. The aerobic CO complex is then identified as a3+a3 2+COCu2+O2-; a similar compound (‘Compound C’) is formed by photolysis of a3+a3 2+CO (the ‘mixed-valence’ CO complex) in the presence of oxygen at low temperatures.

This content is only available as a PDF.
You do not currently have access to this content.